精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ),x∈R其中(A>0,ω>0,0<φ<
π
2
)的周期为π,且图象上一个最高点为M(
π
6
,2).
(1)求f(x)的解析式;
(2)当x∈[
π
12
π
2
]时,求f(x)的值域.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
(2)由x∈[
π
12
π
2
],利用正弦函数的定义域和值域求得f(x)的值域.
解答: 解:(1)由题意可得,A=2,
ω
=π,∴ω=2.
再根据函数的图象经过点M(
π
6
,2),可得2sin(2×
π
6
+φ)=2,结合0<φ<
π
2
,可得ω=
π
6

∴f(x)=2sin(2x+
π
6
).
(2)∵
π
12
≤x≤
π
2
π
3
≤2x+
π
6
6
,则-
1
2
≤sin(2x+
π
6
)≤1

所以f(x)∈[-1,2].
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的定义域和值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=n2+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-1
ax+1
(a>0且a≠1)
(1)求y=f(x)的反函数y=f-1(x);
(2)判断函数y=f-1(x)的奇偶性;
(3)解不等式f-1(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x+
a
x
+lnx,(a∈R)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+cos2x.
(1)求f(x)的最小正周期、最大值、最小值;    
(2)试说明f(x)是怎样由f(x)=sinx变换得来的.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,
5
km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=2n2+n+1,n∈N+
(1)求a1及an
(2)判断数列{an}是否为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某射手每次射击击中目标的概率是
2
3
,且各次射击的结果互不影响.
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求至少有3次击中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),则a,b,c的大小关系为
 

查看答案和解析>>

同步练习册答案