精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(-∞,-2)上的解析式;
(2)在直角坐标系中画出函数f(x)的草图;
(3)写出函数f(x)的值域;
(4)写出函数的单调递减区间.
考点:函数的图象
专题:常规题型
分析:本题考查了偶函数的图象与性质,着重考查了对应区间上函数解析式的求法,偶函数的作图方法,并涉及了其值域与单调性及抛物线的顶点式.
解答: (1)设顶点为P(3,4),且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,
将(2,2)代入可得a=-2,
∴y=-2(x-3)2+4,
即y=-2x2+12x-14.
设x<-2,则-x>2.
又f(x)为偶函数,
∴f(x)=f(-x)=-2×(-x)2-12x-14,
即f(x)=-2x2-12x-14.
∴函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.
(2)函数f(x)的图象如图所示:(-3,0)
(3)由函数图象可得函数f(x)的值域为(-∞,4].
(4)由图知,递减区间为及(3,+∞)(除无穷外,其他端点也可以取到)
点评:本题考查内容比较集中,是高中学习的重点,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l经过点P(2,1),且A(0,4)、B(4,8)两点到直线l的距离相等,则直线l的方程是(  )
A、x-y-1=0
B、x-y-1=0或x-y-4=0
C、x+y-3=0
D、x-y-1=0或x=2

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形三边所在直线方程分别为2x+y-12=0、3x-2y+10=0、x-4y+10=0.
(1)求表示三角形区域(含边界)的不等式组,并画出此区域(用阴影线条表示);
(2)若点P(x,y)在上述区域运动,求z=x+2y的最大值和最小值,并求出相应的x、y值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=
1
3
x3-
1
2
(m+1)x2+x+m在(-∞,+∞)上单调递增;命题q:方程x2-2mx+1=0有实数根.
(1)若p是真命题,求实数m的取值范围; 
(2)若?p为假命题,且p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次文艺晚会上共演出8个节目,其中2个歌曲,3个舞蹈,3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?
(1)一个歌曲节目开头,另一个放在最后压台;
(2)2个歌曲节目互不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE.
(3)求二面角P-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为圆心的圆与直线3x-4y+5=0相切,求圆O的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面积S△ABC=6.
(1)求△ABC的三边的长a,b,c;
(2)设P是△ABC(不含边界)内的一点,P到三边AC、BC、AB的距离分别是x、y、z且
AP
=
AC
|
AC
|
+
AB
|
AB
|

①写出x、y、z所满足的等量关系;
②求
2
x
+
1
y
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(
1
tan
α
2
-tan
α
2
)•
1-cos2α
sin2α

查看答案和解析>>

同步练习册答案