精英家教网 > 高中数学 > 题目详情

【题目】已知F是双曲线 =1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

【答案】A
【解析】解:根据双曲线的对称性,得 △ABE中,|AE|=|BE|,
△ABE是锐角三角形,即∠AEB为锐角,
由此可得Rt△AFE中,∠AEF<45°,
得|AF|<|EF|
∵|AF|= = ,|EF|=a+c,
<a+c,即2a2+ac﹣c2>0,
两边都除以a2 , 得e2﹣e﹣2<0,解之得﹣1<e<2,
∵双曲线的离心率e>1,
∴该双曲线的离心率e的取值范围是(1,2)
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足 = =3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+1满足f(﹣1)=0,且x∈R时,f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]时是单调函数,求实数k的取值范围;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点 为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=﹣2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:kx﹣y+1+2k=0(k∈R) (Ⅰ)证明直线l经过定点并求此点的坐标;
(Ⅱ)若直线l不经过第四象限,求k的取值范围;
(Ⅲ)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的离心率为 ,实轴长为2,直线l:x﹣y+m=0与双曲线C交于不同的两点A,B,
(1)求双曲线C的方程;
(2)若线段AB的中点在圆x2+y2=5上,求m的值;
(3)若线段AB的长度为4 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a≤x≤a+3},B={x|x<﹣1,或x>5}.
(Ⅰ)当a=3时,求(RA)∩B;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角B﹣DC﹣B1的余弦值.

查看答案和解析>>

同步练习册答案