精英家教网 > 高中数学 > 题目详情
14.若集合A={x∈Z|x2+x-12<0},B={x|x<sin5π},则A∩B中元素的个数为(  )
A.2B.3C.4D.5

分析 分别求出关于A、B的不等式,求出A、B的交集即可.

解答 解:A={-3,-2,-1,0,1,2},B={x|x<0},
则A∩B={-3,-2,-1},
故选:B.

点评 本题考查了解不等式问题,考查集合的交集的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设公差不为零的等差数列{an}的前n项和为Sn,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP:PF=1:2,AD=7cm,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b,c均为正数.
(1)若a+b=1,求$\frac{1}{a}+\frac{4}{b}$的最小值;
(2)若a+b+c=m,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}$≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=2\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+sin2x$.
(1)求函数f(x)的单调递增区间;
(2)若将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C的对边分别为a,b,c,若b=3,c=4,且△ABC的面积为3$\sqrt{3}$,则a=$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(ln5)0+($\frac{9}{4}$)0.5+$\sqrt{(1-\sqrt{2})^{2}}$-2${\;}^{lo{g}_{4}2}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设向量$\overrightarrow a=({sinx,sinx}),\overrightarrow b=({\sqrt{3}cosx,sinx})$,
(Ⅰ)设函数$f(x)=\overrightarrow a•\overrightarrow b$,求f(x)的单调递增区间;
(Ⅱ)在△ABC中,锐角A满足$f(A)=\frac{3}{2}$,$b+c=4,a=\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)={2016^x}+{log_{2016}}(\sqrt{{x^2}+1}+x)-{2016^{-x}}$,则关于x的不等式f(3x+1)+f(x)>0的解集为(  )
A.(-∞,0)B.(0,+∞)C.$(-∞,-\frac{1}{4})$D.$(-\frac{1}{4},+∞)$

查看答案和解析>>

同步练习册答案