精英家教网 > 高中数学 > 题目详情
16.设公差不为零的等差数列{an}的前n项和为Sn,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=9.

分析 根据等差数列的性质,结合等差数列前n项和公式的公式将条件进行转化进行计算即可.

解答 解:在等差数列中,$\frac{{S}_{9}}{{S}_{5}}$=$\frac{9×\frac{{a}_{1}+{a}_{9}}{2}}{5×\frac{{a}_{1}+{a}_{5}}{2}}$=$\frac{9×{a}_{5}}{5×{a}_{3}}$=$\frac{9×5{a}_{3}}{5×{a}_{3}}$=9,
故答案为:9.

点评 本题主要考查等差数列性质的应用,结合等差数列的前n项和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={log_a}({x^2}-1)(a>0\;,\;\;且a≠1)$
(1)求函数的定义域;
(2)判断并证明y=f(x)的奇偶性;
(3)令$g(x)=f(\sqrt{x})$,求满足不等式g(2a)>g(a+3)的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过抛物线y2=4x的焦点且倾斜角为30°的直线交抛物线于A,B两点,则|AB|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某单位实行休年假制度三年以来,10名职工休年假的次数进行的调查统计结果如表所示:
休假次数0123
人数1243
根据上表信息解答以下问题:
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{5}$,$\sqrt{3}$),其右焦点F2的坐标为(4,0).
(I)求椭圆C的方程;
(II)已知点B1(-2,0),B2(2,0),过B1的直线l交椭圆C于P、Q两点,交圆O:x2+y2=8于M、N两点,设|MN|=t,若t∈[4,2$\sqrt{7}$],求△B2PQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC中,sin(A-B)=sinC-sinB,D是边BC的一个三等分点(靠近点B),记$\frac{sin∠ABD}{sin∠BAD}=λ$,则当λ取最大值时,tan∠ACD=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$•$\overrightarrow{b}$=-|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线2ax+2y-a-1=0与不等式组$\left\{\begin{array}{l}{-x+y-2≤0}\\{x+y-4≤0}\\{x-2y+2≤0}\end{array}\right.$表示的区域没有公共点,则a的取值范围是(  )
A.(-1,-$\frac{1}{5}$)B.($\frac{1}{5}$,1)C.(-∞,-1)∪(-$\frac{1}{5}$,+∞)D.(-∞,-5)∪(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x∈Z|x2+x-12<0},B={x|x<sin5π},则A∩B中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案