精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)={log_a}({x^2}-1)(a>0\;,\;\;且a≠1)$
(1)求函数的定义域;
(2)判断并证明y=f(x)的奇偶性;
(3)令$g(x)=f(\sqrt{x})$,求满足不等式g(2a)>g(a+3)的a的取值范围.

分析 (1)根据对数函数的真数大于0,求出函数的定义域即可;
(2)根据函数奇偶性的定义证明即可;
(3)求出g(x)的解析式,通过讨论a的范围,结合对数函数的单调性求出a的范围即可.

解答 解:(1)由x2-1>0,解得:x>1或x<-1,
故函数f(x)的定义域是(-∞,-1)∪(1,+∞);
(2)由(1)f(x)的定义域关于(0,0)对称,
且f(-x)=loga(x2-1)=f(x),
故f(x)是偶函数;
(3)g(x)=loga(x-1),显然x>1,
若g(2a)>g(a+3),
则$\left\{\begin{array}{l}{2a>1}\\{a+3>1}\\{2a>a+3}\\{a>1}\end{array}\right.$或$\left\{\begin{array}{l}{2a>1}\\{a+3>1}\\{2a<a+3}\\{0<a<1}\end{array}\right.$,
解得:a>3或$\frac{1}{2}$<a<1,
故a的范围是($\frac{1}{2}$,1)∪(3,+∞).

点评 本题考查了对数函数的性质,考查函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积$S=5\sqrt{3}$,b=5,求sinBsinC的值;
(3)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$cos({arcsina})=\frac{{\sqrt{3}}}{2}$,$tan({arccosb})=-\sqrt{3}$,且$\frac{sinx}{1-cosx}=a+b$,则角x=(  )
A.$x=2kπ-\frac{π}{2}$,k∈ZB.$x=2kπ+\frac{π}{2}$,k∈ZC.x=2kπ,k∈ZD.x=2kπ+π,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)={log_a}\frac{x-2}{x+2}$的定义域为[m,n],值域为[logaa(n-1),logaa(m-1)],且f(x)在[m,n]上为减函数.(常数a>0,且a≠1)
(1)求证m>2
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y={({\frac{1}{2}})^{|x|}}-1$与直线y=m有两个交点,则m的取值范围是(  )
A.(-∞,0)B.[-1,0]C.(-1,0)D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x),g(x)均为奇数,且F(x)=af(x)+bg(x)+2在(-∞,0)上的最小值是-1,则函数F(x)在(0,+∞)上的最大值是(  )
A.6B.5C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=-$\frac{5}{13}$,sinα=$\frac{4}{5}$,则sinβ的值为-$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于a>0,a≠1,下列结论中
(1)am+an=am+n
(2)${({a^m})^n}={a^{m^n}}$
(3)若M=N,则logaM=logaN
(4)若${log_a}{M^2}={log_a}{N^2}$,
则M=N正确的结论有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设公差不为零的等差数列{an}的前n项和为Sn,若a5=5a3,则$\frac{{S}_{9}}{{S}_{5}}$=9.

查看答案和解析>>

同步练习册答案