精英家教网 > 高中数学 > 题目详情
8.已知x>0,y>0,且x+y=1,则$\frac{4}{2x+y}+\frac{1}{y}$的最小值为$\frac{9}{2}$.

分析 由题意可得(2x+y)+y=2,整体代入可得$\frac{4}{2x+y}+\frac{1}{y}$=$\frac{1}{2}$(5+$\frac{4y}{2x+y}$+$\frac{2x+y}{y}$),由基本不等式可得.

解答 解:∵x>0,y>0,且x+y=1,
∴2x+2y=2,即(2x+y)+y=2,
∴$\frac{4}{2x+y}+\frac{1}{y}$=$\frac{1}{2}$($\frac{4}{2x+y}+\frac{1}{y}$)[(2x+y)+y]
=$\frac{1}{2}$(5+$\frac{4y}{2x+y}$+$\frac{2x+y}{y}$)≥$\frac{1}{2}$(5+2$\sqrt{\frac{4y}{2x+y}•\frac{2x+y}{y}}$)=$\frac{9}{2}$
当且仅当$\frac{4y}{2x+y}$=$\frac{2x+y}{y}$即2x+y=2y即y=2x=$\frac{2}{3}$时取等号.
故答案为:$\frac{9}{2}$.

点评 本题考查基本不等式求最值,整体代入并变形为可用基本不等式的形式是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,经推出便风靡全国,甚至涌现出一批在微信的朋友圈销售商的人(简称微商),为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过4小时的用户为“微信控”,否则称其为“非微信控”,调查结果如下:

(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”与“非微信控”的人数;
(3)从(2)中抽取的5人中在随机抽取2人赠送200元的护肤品套装,求这2人至少有1人为“非微信控”的概率.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参数数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程:x2+y2-2x-4y+m=0.
(1)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4\sqrt{5}}{5}$,求m的值;
(2)在(1)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为$\frac{\sqrt{5}}{5}$,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线4x+3y-5=0与圆x2+y2=4相交于A、B两点,则弦长|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P一ABCD,如图所示,其中平面PAD⊥平面ABCD,PA⊥AD,PA=AB=BC=AC=4,线段AC被线段BD平分.
(I)求证:BD⊥平面PAC;
(Ⅱ)若∠ACD=30°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,CD⊥BD,PB⊥平面ABCD,PB=AB=AD=3,E是线段PA上一点,且$\frac{PE}{EA}$=λ.
(I)若PC∥平面BDE,求实数λ的值.
(Ⅱ)在(I)的条件下,求二面角E-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设n∈N+,a,b∈R,函数f(x)=$\frac{alnx}{x^n}$+b,己知曲线y=f(x)在点(1,0)处的切线方程为y=x-l.
(I)求a,b;
(Ⅱ)求f(x)的最大值;
(Ⅲ)设c>0且c≠l,已知函数g(x)=logcx-xn至少有一个零点,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在边长为4的正方形ABCD中,E、F分别是AB、CD的中点,沿EF将矩形ADFE折起使得二面角A-EF-C的大小为90°(如图2),点G是CD的中点
(1)若M为棱AD上一点,且$\overrightarrow{AD}$=4$\overrightarrow{MD}$,求证:DE⊥平面MFC;
(2)求二面角E-FG-B的余弦值.

查看答案和解析>>

同步练习册答案