精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A、B、C所对的边分别为a、b、c,若c=$\sqrt{3},b=1,B={30°}$,则△ABC的面积为$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$.

分析 根据题意和正弦定理求出sinC的值,由内角的范围求出角C,再由内角和定理分别求出角A和△ABC的面积.

解答 解:∵c=$\sqrt{3},b=1,B={30°}$,
∴由正弦定理得,$\frac{b}{sinB}=\frac{c}{sinC}$,则sinC=$\frac{csinB}{b}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
由0<C<π得,C=60°或120°,
①当C=60°时,A=180°-B-C=90°,
∴△ABC的面积S=$\frac{1}{2}bc$=$\frac{\sqrt{3}}{2}$;
②当C=120°时,A=180°-B-C=30°,
∴△ABC的面积S=$\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}$,
综上可得,△ABC的面积是$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$,
故答案为:$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$.

点评 本题考查正弦定理,内角和定理的应用,注意内角的范围,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知{an}是等比数列,有a3•a11=4a7,{bn}是等差数列,且a7=b7,则b5+b9=(  )
A.4B.8C.0或8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用计算机在区间(0,1)上产生两个随机数a和b,则方程x=-2a-$\frac{{4{b^2}}}{x}$无实根的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,四边形ABCD满足$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=0,|$\overrightarrow{AB}$|=2|$\overrightarrow{DC}$|=2,若M是BC的中点,则$\overrightarrow{AB}$•$\overrightarrow{AM}$-$\overrightarrow{DM}$•$\overrightarrow{DC}$=(  )
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x+3的最小距离为(  )
A.1B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z的共轭复数是$\overline{z}$,z=3+i,则$\frac{1}{\overline{z}}$等于(  )
A.3+iB.3-iC.$\frac{3}{10}$i+$\frac{1}{10}$D.$\frac{3}{10}$+$\frac{1}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$y=\sqrt{16-{x^2}}-lgsinx$的定义域为[-4,-π)∪(0,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{a}$-$\frac{1}{x}$.
(1)用单调性定义证明f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在[$\frac{1}{4}$,m]上的值域是[$\frac{1}{2}$,2],求a和m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数$f(x)={x^3}-\frac{1}{2}{x^2}-2x+5$,若对于任意x∈[-1,2]都有f(x)<m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案