精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=2sin(2x+φ)(0<φ<π),y=f(x)图象的一个对称中心是$(\frac{π}{3},0)$.
(Ⅰ)求φ; 
(Ⅱ)在给定的平面直角坐标系中作出该函数在x∈[0,π]的图象;
(Ⅲ)求函数f(x)≥1(x∈R)的解集.

分析 (Ⅰ)根据函数的对称中心代入即可求φ; 
(Ⅱ)利用五点法即可在给定的平面直角坐标系中作出该函数在x∈[0,π]的图象;
(Ⅲ)结合三角不等式进行求解即可.

解答 解:(Ⅰ)∵$(\frac{π}{3},0)$是函数y=f(x)的图象的对称中心,
∴$2sin(2×\frac{π}{3}+φ)=0$,∴$\frac{2π}{3}+φ=kπ(k∈Z)$,
∴$φ=kπ-\frac{2π}{3}$∵0<φ<π,∴$φ=\frac{π}{3}$,
即$f(x)=2sin({2x+\frac{π}{3}})$.
(Ⅱ)列表

x0$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$π
$2x+\frac{π}{3}$$\frac{π}{3}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{7π}{3}$
f(x)$\sqrt{3}$20-20$\sqrt{3}$
(Ⅲ)∵f(x)≥1,
即$2sin(2x+\frac{π}{3})≥1$$sin(2x+\frac{π}{3})≥\frac{1}{2}$,$\frac{π}{6}+2kπ≤2x+\frac{π}{3}≤\frac{5π}{6}+2kπ,k∈Z$.
∴$-\frac{π}{12}+kπ≤x≤\frac{π}{4}+kπ,k∈Z$,
求函数f(x)≥1(x∈R)的解集是$x∈[-\frac{π}{12}+kπ,\frac{π}{4}+kπ],k∈Z$.

点评 本题主要考查三角函数的图象和性质,根据条件求出φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{3}$cos4x+sin4x(x∈R)的递减区间为(  )
A.$[-\frac{5π}{24}+\frac{1}{2}kπ,\frac{π}{24}+\frac{1}{2}kπ](k∈Z)$B.[$\frac{π}{24}+\frac{1}{2}kπ$,$\frac{7π}{24}+\frac{1}{2}kπ$](k∈Z
C.[-$\frac{π}{6}$+$\frac{1}{2}$Kπ,$\frac{π}{12}+\frac{1}{2}kπ$](k∈Z)D.[$\frac{π}{12}+\frac{1}{2}kπ$,$\frac{π}{3}$+$\frac{1}{2}$kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:“?x∈[1,3],x2-a≥0”,q:“?x∈R,x2+2ax+2-a=0”若“p∧q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简sin420°的值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=3sin(-2x+\frac{π}{3})$的单调增区间是[kπ+$\frac{5π}{12}$ kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,设A,B两点在河的两岸,一测量者在点A所在的同侧河岸边选定一点C,测出AC的距离为100m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为(  )
A.100$\sqrt{3}$ mB.100$\sqrt{2}$ mC.50$\sqrt{2}$ mD.25$\sqrt{2}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{i}$,$\overrightarrow{j}$分别是与x轴,y轴方向相同的两个单位向量,$\overrightarrow{O{A}_{1}}$=$\overrightarrow{j}$,$\overrightarrow{O{A}_{2}}$=5$\overrightarrow{j}$,$\overrightarrow{{A}_{n-1}{A}_{n}}$=2$\overrightarrow{{A}_{n}{A}_{n+1}}$(n≥2,n∈N+),$\overrightarrow{OB}$=3$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{{B}_{n}{B}_{n+1}}$=2$\overrightarrow{i}$+2$\overrightarrow{j}$(n∈N+).
(Ⅰ)求|$\overrightarrow{{A}_{7}{A}_{8}}$|;
(Ⅱ)求$\overrightarrow{O{A}_{n}}$,$\overrightarrow{O{B}_{n}}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图所示,且该几何体的体积是4,则正视图中的x的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=3-i的虚部是(  )
A.1B.iC.-1D.-i

查看答案和解析>>

同步练习册答案