·ÖÎö £¨1£©Éè³öEµã×ø±ê£¬ÔÙÉè³öEFÖеã×ø±ê£¬ÓÉÖеã×ø±ê¹«Ê½°ÑÖеã×ø±êÓÃEµÄ×ø±ê±íʾ£¬´úÈëÅ×ÎïÏß·½³ÌÇóµÃEµÄ×ø±ê£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³öÁ½½»µã×ø±ê£¬½áºÏ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÇóµÃkµÄÖµ£»
£¨3£©ÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬ÓÉOM¡ÍON£¬µÃµ½st=-16£¬ÓÉÁ½µãÇóбÂʵõ½Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£¬ÓÉ´Ë¿É˵Ã÷Ö±Ï߱عý£¨0£¬4£©µã£»
£¨4£©ÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬·Ö±ðÁªÁ¢Á½Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬Çó³öC£¬D×ø±ê£¬ÓÉбÂʹ«Ê½¼´¿ÉÇóµÃÖ±ÏßCDµÄбÂÊ£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÅ×ÎïÏß·½³Ì£¬ÓÉÅбðʽ´óÓÚ0Çó³öbµÄ·¶Î§£¬ÓɸùÓëϵÊý¹ØÏµÇóµÃGHÖеã×ø±ê£¬µÃµ½Ïß¶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³Ì£¬È¡x=0£¬¿ÉµÃÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§£®
½â´ð £¨1£©½â£ºÓÉx2=4y£¬µÃF£¨0£¬1£©£¬ÉèE£¨m£¬0£©£¬EFÖеãΪ£¨x£¬y£©£¬
ÓÉ$\left\{\begin{array}{l}{0+m=2x}\\{1+0=2y}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{m}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£¬´úÈëx2=4y£¬µÃ$\frac{{m}^{2}}{4}=4¡Á\frac{1}{2}$£¬½âµÃ£ºm=$¡À2\sqrt{2}$£®
¡àE£¨$¡À2\sqrt{2}£¬0$£©£»
£¨2£©½â£ºÉèÖ±ÏßlµÄбÂÊΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=2k-2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k+2\sqrt{{k}^{2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}{{x}_{1}=2k+2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k-2\sqrt{{k}^{2}+1}}\end{array}\right.$£®
ÓÉ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬µÃ£¨-x1£¬1-y1£©=2£¨x2£¬y2-1£©=£¨2x2£¬2y2-2£©£¬¼´-x1=2x2£®
°Ñx1£¬x2·Ö±ð´úÈë-x1=2x2£®½âµÃ£ºk=$¡À\frac{\sqrt{2}}{4}$£»
£¨3£©Ö¤Ã÷£º¡ßM¡¢NΪÅ×ÎïÏßÉÏÈÎÒâÁ½µã£¬¡àÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬
¡ßOM¡ÍON£¬¡à$st+\frac{{s}^{2}{t}^{2}}{16}=0$£¬¼´st=-16£¬
Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬
¡àÖ±ÏßMNÀûÓõãбʽ·½³ÌΪy-$\frac{1}{4}{s}^{2}=\frac{1}{4}£¨s+t£©£¨x-s£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£®
¡àÖ±Ï߱عý£¨0£¬4£©µã£»
£¨4£©½â£ºÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬
ÔÙÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+4k+4}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃ£ºx2-4kx-16k-16=0£¬
ÓÉx3-4=4k£¬µÃx3=4k+4£¬Ôò${y}_{3}=4{k}^{2}+8k+4$£»
ͬÀíÇóµÃx4=-4k+4£¬${y}_{4}=4{k}^{2}-8k+4$£®
Ôò${k}_{CD}=\frac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}=\frac{16k}{8k}=2$£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+b}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-8x-4b=0£®
ÓÉ¡÷=£¨-8£©2+16b£¾0£¬µÃb£¾-4£®
ÔÙÉèC£¨x5£¬y5£©£¬H£¨x6£¬y6£©£¬
Ôòx5+x6=8£¬¡àG£¬HÖеãºá×ø±êΪ4£¬×Ý×ø±êΪ8+b£¬
ÔòÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-8-b=$-\frac{1}{2}$£¨x-4£©£¬
È¡x=0£¬µÃy=10+b£¬
¡ßb£¾-4£¬¡ày£¾6£®
ÔòÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§ÊÇ£¨6£¬+¡Þ£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏßµÄÓ¦Óã¬Æ½Ãæ½âÎöʽµÄ»ù´¡ÖªÊ¶£®¿¼²éÁË¿¼ÉúµÄ»ù´¡ÖªÊ¶µÄ×ÛºÏÔËÓúÍÖªÊ¶Ç¨ÒÆµÄÄÜÁ¦£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ¿ÕÆøÖÊÁ¿µÈ¼¶ | ÓÅ | Á¼ | Çá¶ÈÎÛȾ | ÖжÈÎÛȾ | ÖØ¶ÈÎÛȾ | ÑÏÖØÎÛȾ |
| AQIÖµ·¶Î§ | [0£¬50£© | [50£¬100£© | [100£¬150£© | [150£¬200£© | [200£¬300£© | 300¼°ÒÔÉÏ |
| Î÷²¿³ÇÊÐ | AQIÊýÖµ | ¶«²¿³ÇÊÐ | AQIÊýÖµ |
| Î÷°² | 108 | ±±¾© | 104 |
| Î÷Äþ | 92 | ½ðÃÅ | 42 |
| ¿ËÀÂêÒÀ | 37 | ÉϺ£ | x |
| ¶õ¶û¶à˹ | 56 | ËÕÖÝ | 114 |
| °ÍÑåÄ×¶û | 61 | Ìì½ò | 105 |
| ¿â¶ûÀÕ | 456 | ʯ¼Òׯ | 93 |
| AQIƽ¾ùÖµ£º135 | AQIƽ¾ùÖµ£º90 | ||
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com