3£®ÒÑÖªÅ×ÎïÏßx2=4yµÄ½¹µãΪF£®
£¨1£©ÒÑÖªxÖáÉÏÒ»µãE£¬ÈôÏß¶ÎEFµÄÖеãÔÚÅ×ÎïÏßÉÏ£¬ÇóµãEµÄ×ø±ê£»
£¨2£©Ö±Ïßl¹ýµãF£¬ÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£¬ÇÒ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÇóÖ±ÏßlµÄбÂÊ£»
£¨3£©ÈôM¡¢NΪÅ×ÎïÏßÉÏÈÎÒâÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¹ýÔ­µãO£¬ÇóÖ¤£ºÖ±ÏßMN¾­¹ý¶¨µã£¬²¢Ð´³öÕâ¸ö¶¨µãµÄ×ø±ê£»
£¨4£©¹ýÅ×ÎïÏßÉÏÒ»µãP£¨-4£¬4£©×÷Á½Ìõ¹ØÓÚÖ±Ïßy=4¶Ô³ÆµÄÖ±Ïß·Ö±ð½»Å×ÎïÏßÓÚC¡¢DÁ½µã£¬ÇóÖ±ÏßCDµÄбÂÊ£»
£¨5£©ÈôбÂÊΪ2µÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚG¡¢HÁ½µã£¬ÇóÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Éè³öEµã×ø±ê£¬ÔÙÉè³öEFÖеã×ø±ê£¬ÓÉÖеã×ø±ê¹«Ê½°ÑÖеã×ø±êÓÃEµÄ×ø±ê±íʾ£¬´úÈëÅ×ÎïÏß·½³ÌÇóµÃEµÄ×ø±ê£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³öÁ½½»µã×ø±ê£¬½áºÏ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÇóµÃkµÄÖµ£»
£¨3£©ÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬ÓÉOM¡ÍON£¬µÃµ½st=-16£¬ÓÉÁ½µãÇóбÂʵõ½Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£¬ÓÉ´Ë¿É˵Ã÷Ö±Ï߱عý£¨0£¬4£©µã£»
£¨4£©ÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬·Ö±ðÁªÁ¢Á½Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬Çó³öC£¬D×ø±ê£¬ÓÉбÂʹ«Ê½¼´¿ÉÇóµÃÖ±ÏßCDµÄбÂÊ£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÅ×ÎïÏß·½³Ì£¬ÓÉÅбðʽ´óÓÚ0Çó³öbµÄ·¶Î§£¬ÓɸùÓëϵÊý¹ØÏµÇóµÃGHÖеã×ø±ê£¬µÃµ½Ïß¶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³Ì£¬È¡x=0£¬¿ÉµÃÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§£®

½â´ð £¨1£©½â£ºÓÉx2=4y£¬µÃF£¨0£¬1£©£¬ÉèE£¨m£¬0£©£¬EFÖеãΪ£¨x£¬y£©£¬
ÓÉ$\left\{\begin{array}{l}{0+m=2x}\\{1+0=2y}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{m}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£¬´úÈëx2=4y£¬µÃ$\frac{{m}^{2}}{4}=4¡Á\frac{1}{2}$£¬½âµÃ£ºm=$¡À2\sqrt{2}$£®
¡àE£¨$¡À2\sqrt{2}£¬0$£©£»
£¨2£©½â£ºÉèÖ±ÏßlµÄбÂÊΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=2k-2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k+2\sqrt{{k}^{2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}{{x}_{1}=2k+2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k-2\sqrt{{k}^{2}+1}}\end{array}\right.$£®
ÓÉ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬µÃ£¨-x1£¬1-y1£©=2£¨x2£¬y2-1£©=£¨2x2£¬2y2-2£©£¬¼´-x1=2x2£®
°Ñx1£¬x2·Ö±ð´úÈë-x1=2x2£®½âµÃ£ºk=$¡À\frac{\sqrt{2}}{4}$£»
£¨3£©Ö¤Ã÷£º¡ßM¡¢NΪÅ×ÎïÏßÉÏÈÎÒâÁ½µã£¬¡àÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬
¡ßOM¡ÍON£¬¡à$st+\frac{{s}^{2}{t}^{2}}{16}=0$£¬¼´st=-16£¬
Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬
¡àÖ±ÏßMNÀûÓõãбʽ·½³ÌΪy-$\frac{1}{4}{s}^{2}=\frac{1}{4}£¨s+t£©£¨x-s£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£®
¡àÖ±Ï߱عý£¨0£¬4£©µã£»
£¨4£©½â£ºÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬
ÔÙÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+4k+4}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃ£ºx2-4kx-16k-16=0£¬
ÓÉx3-4=4k£¬µÃx3=4k+4£¬Ôò${y}_{3}=4{k}^{2}+8k+4$£»
ͬÀíÇóµÃx4=-4k+4£¬${y}_{4}=4{k}^{2}-8k+4$£®
Ôò${k}_{CD}=\frac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}=\frac{16k}{8k}=2$£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+b}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-8x-4b=0£®
ÓÉ¡÷=£¨-8£©2+16b£¾0£¬µÃb£¾-4£®
ÔÙÉèC£¨x5£¬y5£©£¬H£¨x6£¬y6£©£¬
Ôòx5+x6=8£¬¡àG£¬HÖеãºá×ø±êΪ4£¬×Ý×ø±êΪ8+b£¬
ÔòÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-8-b=$-\frac{1}{2}$£¨x-4£©£¬
È¡x=0£¬µÃy=10+b£¬
¡ßb£¾-4£¬¡ày£¾6£®
ÔòÏß¶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§ÊÇ£¨6£¬+¡Þ£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏßµÄÓ¦Óã¬Æ½Ãæ½âÎöʽµÄ»ù´¡ÖªÊ¶£®¿¼²éÁË¿¼ÉúµÄ»ù´¡ÖªÊ¶µÄ×ÛºÏÔËÓúÍÖªÊ¶Ç¨ÒÆµÄÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=BC=2£¬¡ÏABC=120¡ã£¬DΪACµÄÖе㣬PΪÀâA1BÉϵ͝µã£®
£¨1£©Ì½¾¿£ºAPÄÜ·ñÓëÆ½ÃæA1BC´¹Ö±£¿
£¨2£©ÈôAA1=$\sqrt{6}$£¬Çó¶þÃæ½ÇA1-BD-B1µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®´ÓijУµÄ800ÃûÄÐÉúÖÐËæ»ú³éÈ¡50È˲âÁ¿Éí¸ß£¬±»²âѧÉúÉí¸ß½éÓÚ½éÓÚ155cmºÍ195cmÖ®¼ä£¬½«²âÁ¿½á¹û°´ÈçÏ·½Ê½·Ö³É°Ë×飺µÚÒ»×é[155£¬160£©£¬µÚ¶þ×é[160£¬165£©£¬¡­..£¬µÚ°Ë×é[190£¬195]£¬ÈçͼÊǰ´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼µÄÒ»²¿·Ö£¬ÒÑÖªµÚÒ»×éÓëµÚ°Ë×éÈËÊýÏàͬ£¬µÚÁù×éµÄÈËÊýΪ4ÈË£®
£¨¢ñ£©ÇóµÚÆß×éµÄƵÂʲ¢¹À¼Æ¸ÃУÄÐÉúÖÐÉí¸ßÔÚ180cmÒÔÉÏ£¨º¬180cm£©µÄÈËÊý£»
£¨¢ò£©´ÓµÚÁù×éºÍµÚ°Ë×éµÄÄÐÉúÖÐËæ»ú³éÈ¡2Ãû£¬ÇóËûÃǵÄÉí¸ßÖ®²î´óÓÚ5cmµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©»¯¼ò£º$\frac{cos£¨¦Ð-¦Á£©•tan£¨¦Á-2¦Ð£©•tan£¨2¦Ð-¦Á£©}{sin£¨¦Ð+¦Á£©}$£»
£¨2£©ÒÑÖªAΪÈý½ÇÐεÄÄڽǣ¬ÇÒcosA=-$\frac{\sqrt{2}}{2}$£¬Çó½ÇAµÄ»¡¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Çó£¨1-2x£©15µÄÕ¹¿ªÊ½ÖеÄǰ4Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÖ±ÈýÀâÖùABC-A¡äB¡äC¡äÂú×ã¡ÏBAC=90¡ã£¬AB=AC=$\frac{1}{2}$AA¡ä=2£¬µãM¡¢N·Ö±ðΪA¡äB£¬B¡äC¡äµÄÖе㣮
£¨1£©ÇóÖ¤£ºMN¡ÎÆ½ÃæA¡äACC¡ä£»
£¨2£©ÇóÈýÀâ×¶C-MNBµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªsin¦Á•cos¦Á=-$\frac{60}{169}$£¬ÇҽǦÁ¡Ê£¨0£¬¦Ð£©£¬Çósin¦Á-cos¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=x2-2lnx£¬Èô0£¼x1£¼x2£¬ÇóÖ¤£º$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$£¼2x2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¹ú¼Ò»·¾³±ê×¼ÖÆ¶¨µÄ¿ÕÆøÖÊÁ¿Ö¸Êý£¨¼ò³ÆAQI£©Óë¿ÕÆøÖÊÁ¿µÈ¼¶¶ÔÓ¦¹ØÏµÈçÏÂ±í£º
¿ÕÆøÖÊÁ¿µÈ¼¶ÓÅÁ¼Çá¶ÈÎÛȾÖжÈÎÛÈ¾ÖØ¶ÈÎÛȾÑÏÖØÎÛȾ
AQIÖµ·¶Î§[0£¬50£©[50£¬100£©[100£¬150£©[150£¬200£©[200£¬300£©300¼°ÒÔÉÏ
ϱíÊÇÓÉÌìÆøÍø»ñµÃµÄÈ«¹ú¶«Î÷²¿¸÷6¸ö³ÇÊÐ2015Äê3ÔÂijʱ¿Ìʵʱ¼à²âµ½µÄÊý¾Ý£º
Î÷²¿³ÇÊÐAQIÊýÖµ¶«²¿³ÇÊÐAQIÊýÖµ
Î÷°²108±±¾©104
Î÷Äþ92½ðÃÅ42
¿ËÀ­ÂêÒÀ37ÉϺ£x
¶õ¶û¶à˹56ËÕÖÝ114
°ÍÑåÄ×¶û61Ìì½ò105
¿â¶ûÀÕ456ʯ¼Òׯ93
AQIƽ¾ùÖµ£º135AQIƽ¾ùÖµ£º90
£¨¢ñ£© ÇóxµÄÖµ£¬²¢¸ù¾ÝÉϱíÖеÄͳ¼ÆÊý¾Ý£¬Åж϶«¡¢Î÷²¿³ÇÊÐAQIÊýÖµµÄ·½²îµÄ´óС¹ØÏµ£¨Ö»Ðèд³ö½á¹û£©£»
£¨¢ò£©»·±£²¿ÃÅ´Ó¿ÕÆøÖÊÁ¿¡°ÓÅ¡±ºÍ¡°Çá¶ÈÎÛȾ¡±µÄÁ½Àà³ÇÊÐËæ»úѡȡ3¸ö³ÇÊÐ×é֯ר¼Ò½øÐе÷ÑУ¬¼ÇÑ¡µ½¿ÕÆøÖÊÁ¿¡°Çá¶ÈÎÛȾ¡±µÄ³ÇÊиöÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸