| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
分析 由已知条件推导出$\frac{f(x)}{g(x)}$=ax,利用条件,结合导数的性质求出$\frac{f(x)}{g(x)}$=ax是减函数,利用$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,推导出a=$\frac{1}{2}$.从而得到有穷数列$\{\frac{f(n)}{g(n)}\}$为{($\frac{1}{2}$)n},再由等比数列的求和公式结合条件,解不等式可得k>4,由古典概率公式能求出结果.
解答 解:∵f(x)=ax•g(x)(a>0且a≠1),
∴$\frac{f(x)}{g(x)}$=ax,
又∵f′(x)g(x)<f(x)g′(x),
∴($\frac{f(x)}{g(x)}$)′=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$<0,
∴$\frac{f(x)}{g(x)}$=ax是减函数,
∴0<a<1,
∵$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,
∴a1+a-1=$\frac{5}{2}$,解得a=$\frac{1}{2}$或a=2.
综上得a=$\frac{1}{2}$.
∴有穷数列$\{\frac{f(n)}{g(n)}\}$为{($\frac{1}{2}$)n}.
∵数列$\{\frac{f(n)}{g(n)}\}$的前k项和大于$\frac{15}{16}$,
∴($\frac{1}{2}$)+($\frac{1}{2}$)2}+…+($\frac{1}{2}$)k>$\frac{15}{16}$,
即有$\frac{\frac{1}{2}(1-\frac{1}{{2}^{k}})}{1-\frac{1}{2}}$>$\frac{15}{16}$,
即为$\frac{1}{{2}^{k}}$<$\frac{1}{16}$,解得k>4,
即有k=5,6,…,10,
而n=1,2,…,10,
则前k项和大于$\frac{15}{16}$的概率是$\frac{6}{10}$=$\frac{3}{5}$.
故选:C.
点评 本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,考查构造法和运算能力,是一道好题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 | |
| B. | 若p且q为假命题,则p,q均为假命题 | |
| C. | “x=-1”是“x2-5x-6=0”的充分不必要条件 | |
| D. | 命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=2sin(2x+\frac{2π}{3})$ | B. | $y=2sin(2x+\frac{5π}{12})$ | C. | $y=2sin(2x-\frac{π}{3})$ | D. | $y=2sin(2x-\frac{π}{12})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ①③④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com