11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µãΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£¬¹ýF2µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬Èô¡÷AF1BµÄÖܳ¤Îª8$\sqrt{3}$£¬ÔòÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1£®

·ÖÎö ÓÉÒÑÖªµÃ$e=\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬4a=8$\sqrt{3}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®

½â´ð ½â£º¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µãΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£¬
¡à$e=\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬
¡ß¹ýF2µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬¡÷AF1BµÄÖܳ¤Îª8$\sqrt{3}$£¬
¡à4a=8$\sqrt{3}$£¬½âµÃa=2$\sqrt{3}$£¬¡àc=2£¬
¡àb2=12-4=8£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}$=1£®
¹Ê´ð°¸Îª£º$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}$=1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¡°ÇúÏßCÉϵĵãµÄ×ø±ê¶¼ÊÇ·½³Ì$f£¨\begin{array}{l}{x£¬y}\end{array}£©$=0µÄ½â¡±ÊÇ¡°·½³Ì$f£¨\begin{array}{l}{x£¬y}\end{array}£©$=0ÊÇÇúÏßCµÄ·½³Ì¡±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö·Ç±ØÒªB£®±ØÒª·Ç³ä·Ö
C£®³äÒªD£®¼È·Ç³ä·ÖÒ²·Ç±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª2£¬´ÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò´Ë¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®36B£®9C£®72D£®48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{2}$=1µÄ³¤Ö᳤Ϊ6£¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{7}}}{3}$B£®$\frac{{\sqrt{3}}}{3}$C£®$\frac{{\sqrt{34}}}{6}$D£®$\frac{{\sqrt{6}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹Û²ìÏÂÁÐÊýµÄÌØµã£ºÔÚ1£¬2£¬2£¬3£¬3£¬3£¬4£¬4£¬4£¬4¡­ÖУ¬µÚ100ÏîµÄÖµÊÇ14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{3}{x^3}-£¨{a-1}£©{x^2}+{b^2}x$£¬ÆäÖÐa£¬bΪʵÊý
 £¨1£©Çóf£¨x£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þ£»
 £¨2£©ÈôÁîb=1£¬ÈÎÈ¡a¡Ê[0£¬4]£¬Çóf£¨x£©ÔÚRÉÏÊÇÔöº¯ÊýµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=$\frac{x}{2}$+sinxµÄËùÓÐÕýµÄ¼«Ð¡Öµµã´ÓСµ½´óÅųɵÄÊýÁÐ{xn}£®
£¨1£©ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨2£©Áîbn=$\frac{x_n}{2¦Ð}$£¬ÉèÊýÁÐ$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$µÄǰnÏîºÍΪsn£¬ÇóÖ¤Sn£¼$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ö±Ïß2x+y-7=0ÓëÖ±Ïßx+2y-5=0µÄ½»µãÊÇ£¨¡¡¡¡£©
A£®£¨3£¬-1£©B£®£¨-3£¬1£©C£®£¨-3£¬-1£©D£®£¨3£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1=3£¬a2=6£»Éè${b_n}={2^{a_n}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪ${S_n}£¨{n¡Ê{N^*}}£©$£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÕûÊýn£¬t£¬Ê¹µÃ$\frac{{{S_n}-t{b_n}}}{{{S_{n+1}}-t{b_{n+1}}}}£¼\frac{1}{16}$£¬Èô´æÔÚ£¬Çó³ön£¬tµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸