精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sin4ωx-cos4ωx+2sinωxcosωx(ω>0),点M,N是f(x)图象的两个相邻的对称中心,点H是f(x)图象的一个最高点,三角形MNH的面积为$\frac{\sqrt{2}π}{4}$.
(1)求ω的值以及函数f(x)的单调递增区间;
(2)锐角三角形ABC,边c=2,所对角C满足f(C)=1,求其面积S的取值范围.

分析 (1)化简函数,利用三角形MNH的面积为$\frac{\sqrt{2}π}{4}$,求ω的值,可得函数f(x)的单调递增区间;
(2)锐角三角形ABC,边c=2,所对角C满足f(C)=1,S=$\frac{1}{2}absinC$=2$\sqrt{2}$sinAsinB=$\sqrt{2}$cos(A-B)+1=$\sqrt{2}$cos(2A-135°),即可求其面积S的取值范围.

解答 解:(1)f(x)=sin4ωx-cos4ωx+2sinωxcosωx=sin2ωx-cos2ωx=$\sqrt{2}$sin(2ωx-$\frac{π}{4}$),
∵三角形MNH的面积为$\frac{\sqrt{2}π}{4}$,
∴$\frac{1}{2}×\frac{π}{2ω}×\sqrt{2}$=$\frac{\sqrt{2}π}{4}$,
∴ω=1,
∴f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,得函数f(x)的单调递增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z);
(2)由题意,sin(2C-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,三角形ABC是锐角三角形,
∴2C-$\frac{π}{4}$=$\frac{π}{4}$,∴C=$\frac{π}{4}$,
由正弦定理可得2R=$\frac{c}{sinC}$=2$\sqrt{2}$,
S=$\frac{1}{2}absinC$=2$\sqrt{2}$sinAsinB=$\sqrt{2}$cos(A-B)+1=$\sqrt{2}$cos(2A-135°),
∵0°<A<90°,0°<135°-A<90°,
∴45°<A<90°,
∴-45°<2A-135°<45°,
∴1<S≤$\sqrt{2}$.

点评 本题考查三角函数的化简,考查三角函数的图形与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,m-1),$\overrightarrow{c}$=(4,n),若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$,则m+n的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a∈(0,$\frac{π}{2}$],则点f(a)=${∫}_{0}^{a}$(cosx-sin2x)dx取最大值时,则a=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.根据下面列联表作出的条形图中正确的有(  )
12总 计
115
22
总 计10
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AD上移动.
(1)证明:D1E⊥A1D;
(2)AE等于何值时,二面角D1-EC-D的大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,一个空间几何体正视图与左视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的表面积为(  )
A.πB.C.D.$π+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列关系:(1)$\frac{1}{3}$∈R;(2)$\sqrt{5}$∈Q;(3)-3∉Z;(4)-$\sqrt{3}$∉N,其中正确的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b 为常数,a≠0,f(x)=ax2+bx,且f(2)=0,方程f(x)=x 有两个相等的实数根
(1)求f(x) 的解析式
(2)是否存在m,n(m<n),使f(x) 在区间[m,n]上的值域是[2m,2n]?如果存在,求出m,n 的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,它们的夹角为120°,那么|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案