精英家教网 > 高中数学 > 题目详情
5.在梯形ABCD中,AD∥BC,BC=2AD,AB=AD=$\sqrt{2}$,AB⊥BC,如图把△ABD沿BD翻折,使得平面ABD⊥平面BCD

(1)求证:CD⊥平面ABD;
(2)若M为线段BC中点,求三棱锥M-ACD的体积.

分析 (1)过D作DE⊥BC,利用勾股定理求出BD,CD,根据勾股定理的逆定理证明BD⊥CD,利用面面垂直的性质得出CD⊥平面ABD;
(2)由于M为BC的中点,故三棱锥M-ACD的体积为三棱锥B-ACD的体积的一半.

解答 证明:(1)过D作DE⊥BC,
∵AB=AD,AD∥BC,AB⊥BC,
∴四边形ABED是正方形,
∴DE=AB=$\sqrt{2}$,BE=AD=$\sqrt{2}$,BD=$\sqrt{2}$AB=2.
∵BC=2AD=2$\sqrt{2}$,∴CE=$\sqrt{2}$,
∴CD=$\sqrt{D{E}^{2}+C{E}^{2}}=2$.
∴BD2+CD2=BC2,∴BD⊥CD.
∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,CD?平面BCD,
∴CD⊥平面ABD.
(2)VB-ACD=VC-ABD=$\frac{1}{3}{S}_{△ABD}•CD$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×2$=$\frac{2}{3}$.
∵M是BC的中点,
∴VM-ACD=$\frac{1}{2}{V}_{B-ACD}$=$\frac{1}{3}$.

点评 本题考查了侧面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.如果非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的方向相反或相同,那么$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$中的一个向量的方向相同
B.若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为三角形的三个顶点
C.设$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$∥$\overrightarrow{b}$
D.若|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{b}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+(1-a)x2-a(a+2)x(a∈R),g(x)=$\frac{19}{6}$x-$\frac{1}{3}$.是否处在实数a,存在x1∈[-1,1],x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}是等比数列,a2=2,a6=32,求a1,S4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.当|m|≤2时,不等式mx2-2x-m+1<0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数g(x)=x-1,函数f(x)满足f(x+1)=-2f(x)-1,当x∈(0,1]时,f(x)=x2-x,对于?x1∈(1,2],?x2∈R,则(x1-x22+(f(x1)-g(x2))2的最小值为(  )
A.$\frac{1}{2}$B.$\frac{49}{128}$C.$\frac{81}{128}$D.$\frac{125}{128}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)广东李先生2016年1月购买一辆价值20万元的新车
      ①估计李先生购车时 的商业车险保费;
      ②若该车今年2月份已出过一次险,现在有被刮花了,李先生到汽车维修4S店询价,预计修车费用为800元,保险专家建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的程序框图,若输入n的值为5,则输出s的值为(  )
A.7B.8C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正项等比数列{an}满足log2an+2-log2an=2,且a3=8,则数列{an}的前n项和Sn=2n+1-2.

查看答案和解析>>

同步练习册答案