精英家教网 > 高中数学 > 题目详情
7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=4,则球O的表面积等于32π.

分析 求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.

解答 解:令△PAD所在圆的圆心为O1,则
因为PA=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$,
所以圆O1的半径r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因为平面PAD⊥底面ABCD,
所以OO1=$\frac{1}{2}$AB=2,
所以球O的半径R=2$\sqrt{2}$,
所以球O的表面积=4πR2=32π.
故答案为32π.

点评 本题考查球O的表面积,考查学生的计算能力,求出球O的半径是关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-4x+3.
(1)求f(x)在区间[0,m]上的最小值;
(2)在给出的直角坐标系中,作出函数g(x)=f(|x|)的图象,并根据图象写出其单调减区间;
(3)若关于x的方程f(|x|)-a=x至少有三个不相等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数既是奇函数又在(-1,1)上是减函数的是(  )
A.y=tanxB.y=x-1C.y=log${\;}_{\frac{1}{2}}$$\frac{3+x}{3-x}$D.y=$\frac{1}{3}$(3x-3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5
(1)求函数f(x)解析式
(2)求函数f(x)在x∈[-2,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积相等,q:A,B在等高处的截面面积恒相等,根据祖暅原理可知,p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点D为BC的中点.
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)若点E为A1C上的点,且满足A1E=mEC(m∈R),三棱锥E-ADC的体积与三棱柱ABC-A1B1C1的体积之比为1:12,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三角形ABC的角A.B.C的对边分别为a.b.c.已知10acosB=3bcosA,$cosA=\frac{{5\sqrt{26}}}{26}$,则C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将曲线y=sin 2x按照伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到的曲线方程为(  )
A.y=3sin xB.y=3sin 2xC.y=3sin$\frac{1}{2}$xD.y=$\frac{1}{3}$sin 2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知公差不为0的等差数列{an}的首项a1为1,前n项和为Sn,且a1,a2,a4成等比数列,则$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{15}{8}$.

查看答案和解析>>

同步练习册答案