精英家教网 > 高中数学 > 题目详情
9.若存在x∈(2,+∞)使不等式2x-m<log2x成立,则实数m的取值范围为(3,+∞).

分析 分离参数m>2x-log2x,构造函数,求出函数的最值.

解答 解:存在x∈(2,+∞)使不等式2x-m<log2x成立,
∴m>2x-log2x,
设f(x)=2x-log2x,
∴f′(x)=2-$\frac{1}{xln2}$>0,
∴f(x)在(2,+∞)上单调递增,
∴f(x)>f(2)=2×2-log22=3,
∴m>3,
故实数m的取值范围为(3,+∞)
故答案为:(3,+∞).

点评 本题考查了参数的取值范围问题,关键是分离参数,求出函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.读下面的程序框图,若输入的值为-5,则输出的结果是(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在直角梯形ABCD中,AB∥DC,AD⊥AB,AD=AB=2,DC=4,点M是梯形ABCD内或边界上的一个动点,点N是DC边的中点,则$\overrightarrow{AM}•\overrightarrow{AN}$的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C的一条直径上的两个端点的坐标为(1,1),(1,5).
(1)求圆C的标准方程;
(2)求直线3x-4y+4=0截圆C所得弦长l的值;
(3)从圆C外一点P(a,b)向圆C引切线PT,T为切点,使|PT|=|PO|(O为原点),求|PT|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知(1+ax)6=a0+a1x+a2x2+…+a6x6,若a2=${∫}_{0}^{3}$(x2+2)dx,则实数a的值为(  )
A.1B.2C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的极坐标方程是ρ=4sinθ以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.
(1)求圆C的直角坐标方程和圆心和圆心C的极坐标;
(2)若斜率为2,且过点P(0,a)的直线l与圆C相交于A,B两点,且|PA|•|PB|=3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.极坐标方程分别是ρ=2cosθ和ρ=2sinθ的两个圆的圆心距是(  )
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y满足约束条件$\left\{\begin{array}{l}{1≤x≤2}\\{2≤x+2y≤4}\\{\;}\end{array}\right.$,则(x+1)2+(y+2)2的取值范围为[$\frac{41}{4}$,18].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}满足:a1+a3=10,a4+a6=$\frac{5}{4}$,则{an}的通项公式an=(  )
A.$\frac{1}{{2}^{n-4}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n-3}}$+4D.$\frac{1}{{2}^{n-2}}$+6

查看答案和解析>>

同步练习册答案