精英家教网 > 高中数学 > 题目详情
3.曲线y=x3-6x2+9x-2在点(1,2)处的切线方程是(  )
A.x=1B.y=2C.x-y+1=0D.x+y-3=0

分析 先求切线斜率,即f′(1)=3-2=1,然后由点斜式即可求出切线方程.

解答 解:f′(x)=3x2-12x+9,所以x=1,f′(1)=3-12+9=0,
即函数y=x3-6x2+9x-2在点(1,2)处的切线斜率是0,
所以切线方程为:y-2=0×(x-1),即y=2.
故选:B.

点评 本题考查利用导数研究曲线上某点的切线方程问题,函数在某点处的导数为该点处的切线斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知关于x的不等式ax2+(a-2)x-2≥0,其中a∈R.
(1)若不等式的解集为(-∞,-1]∪[4,+∞),求实数a的值;
(2)若不等式ax2+(a-2)x-2≥2x2-5对任意实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.盒中有标号分别为0,1,2,3的球各一个,这些球除标号外均相同.从盒中依次摸取两个球(每次一球,摸出后不放回),记为一次游戏.规定:摸出的两个球上的标号之和等于5为一等奖,等于4为二等奖,等于其它为三等奖.
(1)求完成一次游戏获三等奖的概率;
(2)记完成一次游戏获奖的等级为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l的斜率为-1,则直线l的倾斜角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA=$\sqrt{3}$asinB.
(1)求角A的大小;
(2)若a=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.C${\;}_{4}^{2}$=6;A${\;}_{5}^{2}$=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||2x-1|<3},B={x|x<1,或x>3},则A∩B等于(  )
A.{x|-1<x<3}B.{x|x<2,或x>3}C.{x|-1<x<1}D.{x|x<-1,或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为
(  )
A.300B.200C.150D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在东辰学校的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求食堂每天面包需求量的平均数.
(Ⅱ)求T关于x函数解析式;
(III)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

同步练习册答案