精英家教网 > 高中数学 > 题目详情
13.不同直线m,n和不同平面α,β,给出下列命题:
①$\left.\begin{array}{l}{n∥α}\\{m?α}\end{array}\right\}$⇒m∥n;②$\left.\begin{array}{l}{n∥m}\\{m?β}\end{array}\right\}$⇒n∥β;③$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$⇒m,n不共面;④$\left.\begin{array}{l}{n∥β}\\{m∥α}\end{array}\right\}$⇒m∥n,
写出所有假命题的序号为①②③④.

分析 利用空间线线、线面、面面的位置关系,对①②③④逐个分析即可得到答案.

解答 解:对于①,$\left.\begin{array}{l}{n∥α}\\{m?α}\end{array}\right\}$⇒m∥n或m与n异面,故①错误;
对于②,$\left.\begin{array}{l}{n∥m}\\{m?β}\end{array}\right\}$⇒n∥β或n?β,故②错误;
对于③,$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$⇒m,n可能平行或相交,也可能异面,故③错误;
对于④,$\left.\begin{array}{l}{n∥β}\\{m∥α}\end{array}\right\}$⇒m∥n或m、n相交或异面,故④错误.
综上所述,所有假命题的序号为①②③④,
故答案为:①②③④.

点评 本题考查命题的真假判断与应用,考查空间线线、线面、面面的位置关系,考查空间想象能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.以下关于正弦定理或其变形的叙述错误的是(  )
A.在△ABC中,a:b:c=sinA:sinB:sinC
B.在△ABC中,若sin2A=sin2B,则a=b
C.在△ABC中,若sinA>sinB,则A>B,若A>B,则sinA>sinB
D.在△ABC中,$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{a}_{7}}{{b}_{3}}$的值是$\frac{93}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点$P(-\sqrt{3},y)$是角α终边上一点且$sinα=\frac{{\sqrt{13}}}{13}$,则y=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域为R,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x-3)>1的解集为(  )
A.(1,6)B.(-1,5)C.(0,5)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线3x2-y+6=0在$x=-\frac{1}{6}$处的切线的倾斜角是(  )
A.-135°B.-45°C.45°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各式正确的是(  )
A.eπ+1>π•eeB.3eπ<πe3C.3e2>2e3D.e${\;}^{\sqrt{2}}$<$\sqrt{2}$e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系中,A(2,3,5)B(3,1,7),则点A、B之间的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过抛物线C:x2=2py(p>0)的焦点F且斜率为$\frac{3}{4}$的直线与抛物线C在第一象限的交点为P,且|PF|=5.
(1)求抛物线C的方程;
(2)过F且斜率不为0直线l交抛物线C于M,N两点,抛物线C的准线与x轴交于点K,点A与点N关于y轴对称,求证:K,A,M三点共线.

查看答案和解析>>

同步练习册答案