精英家教网 > 高中数学 > 题目详情
4.两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{a}_{7}}{{b}_{3}}$的值是$\frac{93}{8}$.

分析 由题意,不妨令Sn=n(7n+2),Tn=n(n+3),则an=14n-5,bn=2n+2,即可求出$\frac{{a}_{7}}{{b}_{3}}$的值.

解答 解:由题意,不妨令Sn=n(7n+2),Tn=n(n+3),则an=14n-5,bn=2n+2,
∴$\frac{{a}_{7}}{{b}_{3}}$=$\frac{98-5}{6+2}$=$\frac{93}{8}$,
故答案为$\frac{93}{8}$.

点评 本题考查等差数列的通项与求和,考查学生的计算能力,正确求出数列的通项是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.关于x的方程$\sqrt{3}sin2x+cos2x=k+1$在$[0,\frac{π}{2}]$内有实数根,则k的取值范是(  )
A.(-3,1)B.(0,2)C.[0,1]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了解社区居民的家庭收入与年支出的关系,随机抽查5户家庭得如下数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.76$,$\widehata=\overline y-\widehatb\overline x$,据此估计,该社区一户收入20万元家庭的支出是(  )
A.15.6万元B.15.8万元C.16万元D.16.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\frac{tan2x}{{\sqrt{x-{x^2}}}}$的定义域为$(0,\frac{π}{4})∪(\frac{π}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点P(a,-2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2),证明:x1x2+y1y2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.由直线y=x+1上一点向圆(x-3)2+y2=1 引切线,则该点到切点的最小距离为(  )
A.1B.$\sqrt{7}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f′(3)=4,则 $\underset{lim}{h→0}$$\frac{f(a-h)-f(a)}{2h}$为(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不同直线m,n和不同平面α,β,给出下列命题:
①$\left.\begin{array}{l}{n∥α}\\{m?α}\end{array}\right\}$⇒m∥n;②$\left.\begin{array}{l}{n∥m}\\{m?β}\end{array}\right\}$⇒n∥β;③$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$⇒m,n不共面;④$\left.\begin{array}{l}{n∥β}\\{m∥α}\end{array}\right\}$⇒m∥n,
写出所有假命题的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆C:x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0过坐标原点,则实数m的值为(  )
A.2或1B.-2或-1C.2D.1

查看答案和解析>>

同步练习册答案