精英家教网 > 高中数学 > 题目详情
9.由直线y=x+1上一点向圆(x-3)2+y2=1 引切线,则该点到切点的最小距离为(  )
A.1B.$\sqrt{7}$C.2$\sqrt{2}$D.3

分析 从题意看出,切线长、直线上的点到圆心的距离、半径之间满足勾股定理,显然圆心到直线的距离最小时,切线长也最小.

解答 解:从题意看出,切线长、直线上的点到圆心的距离、半径之间满足勾股定理,
显然圆心到直线的距离最小时,切线长也最小.
圆心到直线的距离为:$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$.
切线长的最小值为:$\sqrt{8-1}$=$\sqrt{7}$,
故选B.

点评 本题考查直线和圆的方程的应用,圆的切线方程,考查转化的数学思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列各函数的导数:①$(\sqrt{x})'=\frac{1}{2}{x^{-\frac{1}{2}}}$;②(ax)′=a2lnx;③(sin2x)′=cos2x;④($\frac{1}{x+1}$)′=$\frac{1}{x+1}$.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\frac{x}{lnx}$+ax,若f(x)在(1,+∞)上单调递减,则a的取值范围是(-∞,-$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{a}_{7}}{{b}_{3}}$的值是$\frac{93}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a,b,c∈R且c-a=2,则“2a+b>1”是“a,b,c这3个数的平均数大于1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点$P(-\sqrt{3},y)$是角α终边上一点且$sinα=\frac{{\sqrt{13}}}{13}$,则y=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线3x2-y+6=0在$x=-\frac{1}{6}$处的切线的倾斜角是(  )
A.-135°B.-45°C.45°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.极坐标方程ρ(cos2θ-sin2θ)=0表示的曲线为(  )
A.极轴B.一条直线C.双曲线D.两条相交直线

查看答案和解析>>

同步练习册答案