精英家教网 > 高中数学 > 题目详情
1.已知A={x|x≥k},B={{x|$\frac{3}{x+1}$<1},若A⊆B,则k的范围是(  )
A.k<-1B.k≤-1C.k>2D.k≥2

分析 化简集合A,B;再由A⊆B可求得实数k的取值范围.

解答 解:B={x|$\frac{3}{x+1}$<1}=(-∞,-1)∪(2,+∞),
A={x|x≥k}=[k,+∞),
又∵A⊆B,
∴k>2.
故选:C.

点评 本题考查了集合的化简与集合包含关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知曲线C1、C2的极坐标方程分别为ρ=2sinθ,$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=-1,则曲线C1上的点与曲线C2上的点的最短距离为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}的前n项和为Sn,已知S3=a1+4a2,a5=7,则a1=(  )
A.1B.-1C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某产品的广告费用x与销售额y的不完整统计数据如表:
广告费用x(万元)345
销售额y(万元)2228m
若已知回归直线方程为$\widehat{y}$=9x-6,则表中m的值为(  )
A.40B.39C.38D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数R(x)=$\left\{\begin{array}{l}1,x=0\\ \frac{1}{p},x=\frac{q}{p}\\ 0,x∈{C_R}Q\end{array}$(p∈N+},q∈Z且q≠0)其中p,q的公约数只有1,在下列结论中正确的有(  )①R($\frac{1}{4}$)=R($\frac{3}{4}$); ②R($\frac{1}{5}$)=R($\frac{6}{5}$);③?x∈R,R(-x)=R(x);④?x∈R,R(x+1)=R(x)
A.①③B.①④C.①②③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y2=2px(p>0)的焦点F和椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点重合,直线l过点F交抛物线于A、B两点.
(1)求抛物线C的过程;
(2)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,对任意的直线l,m+n是否为定值?若是,求出m+n的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.
(1)求点M的轨迹方程;
(2)设M的轨迹与y轴的交点为P,过P作斜率为k的直线l与M的轨迹交于另一点Q,若C(1,2k+2),求△CPQ面积的最大值,并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求直线AB与平面EBC所成的角的大小;
(3)求二面角A-EB-C的大小.
(4)你认为求二面角常用的方法有哪些?请按应用的重要程度写出3种,并就其中一种方法谈谈它的应用条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x<0}\\{5x,0≤x<1}\\{x+7,x≥1}\end{array}\right.$,画出求函数值的算法框图,并写出相应的算法语句.

查看答案和解析>>

同步练习册答案