精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-y2 
=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:抛物线y2=-6x的准线为x=
3
2
.双曲线
x2
a2
-y2 
=1(a>0)的右准线为x=
a2
a2+1
,由题意可得:
a2
a2+1
=
3
2
,解出即可.
解答: 解:抛物线y2=-6x的准线为x=
3
2

双曲线
x2
a2
-y2 
=1(a>0)的右准线为x=
a2
a2+1

a2
a2+1
=
3
2

解得a2=3,
∴c=2.
∴该双曲线的离心率=
c
a
=
2
3
3

故答案为:
2
3
3
点评:本题考查了双曲线与抛物线的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经过三点A(1,12),B(7,10),C(-9,2)的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
24
1x
,B=
2-2
-11
,若BA=
24
-1-2
,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-3|x-a|其中a∈R.
(1)当a=0时,方程f(x)=b+1恰有三个根,求实数b的值;
(2)若a>0,函数g(x)=x3+1-xf(x)在区间(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F,G分别为PB,BBC,AP的中点.
(Ⅰ)求证:平面EFG∥平面PCD;
(Ⅱ)若CD=PD=2,求三棱锥E-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,D、E分别是BC、AB的中点,P是△ABC(包括边界)内任一点,则
AD
EP
的取值范围是(  )
A、[-7,7]
B、[-8,8]
C、[-9,9]
D、[-10,O]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
x3-
1
2
x2-2x+1,则该函数的单调递增区间为(  )
A、(-∞,-1)
B、(2,+∞)
C、(-1,2)
D、(-∞,-1)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个几何体的三视图如下图所示,这个几何体应是一个(  )
A、棱锥B、圆锥C、圆柱D、棱柱

查看答案和解析>>

同步练习册答案