精英家教网 > 高中数学 > 题目详情
10.已知二次函数的图象与x轴的交点为(0,0)和(-2,0),且f(x)的最小值是-1,函数g(x)与f(x)的图象关于y轴对称,求f(x)和g(x)的解析式.

分析 根据一元二次函数的性质,利用待定系数法进行求解即可.

解答 解:∵二次函数的图象与x轴的交点为(0,0)和(-2,0),且f(x)的最小值是-1,
∴抛物线开口向上,且对称轴为x=-1,则顶点坐标为(-1,-1),
设f(x)=a(x+1)2-1,
∵f(0)=0,
∴a-1=0,则a=1,
即f(x)=(x+1)2-1=x2+2x,
若g(x)与f(x)的图象关于y轴对称,
即g(x)=f(-x)=x2-2x.

点评 本题主要考查函数解析式的求解,利用待定系数法结合一元二次函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.点P(4,1)平分抛物线y2=6x的一条弦,则这条弦所在直线的方程是3x-y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦点分别为F1、F2,P是双曲线上的一点,若|PF1|=7,则△PF1F2最大内角的余弦值为(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.$\frac{59}{117}$D.$\frac{11}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.cos$\frac{π}{12}$cos$\frac{7π}{12}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{3}}{4}$D.-$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知:角A,B,C为锐角,A<B<C,A+B+C=π,且tanA,tanB,tanC为整数,那么tanA=1,tanB=2,tanC=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A={x|x2-2x-3=0},B={x|ax-2=0},若A∩B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A={x||x-1|<a,a>0},B={x|-x2+5x-3>2x-1}
(1)求集合A与B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对任意复数z=x+yi(x、y∈R),定义g(z)=3x(cosy+isiny).
(1)若g(z)=3,求相应的复数z;
(2)计算g(2+$\frac{π}{4}$i),g(-1+$\frac{π}{4}$i),g(1+$\frac{π}{2}$i)并构造它们之间的一个等式,由此发现一个更一般的等式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\left\{\begin{array}{l}{\frac{sinax}{\sqrt{1-cosx}},-π<x<0}\\{b,x=0}\\{\frac{1}{x}(lnx-ln({x}^{2}+x),x>0}\end{array}\right.$连续,求a,b.

查看答案和解析>>

同步练习册答案