精英家教网 > 高中数学 > 题目详情
9.若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记做b|a,若a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100,且b|(a-1),则b 的值可以是(  )
A.83B.93C.103D.113

分析 利用二项式定理可得:a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100=(1+8)100=(10-1)100,展开可得:a-1=103×$(1{0}^{97}-{∁}_{100}^{1}•1{0}^{96}+$…-${∁}_{100}^{97}$+494),即可得出结论.

解答 解:∵a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100=(1+8)100=(10-1)100
=$1{0}^{100}+{∁}_{100}^{1}$1099×(-1)+…+${∁}_{100}^{98}×1{0}^{2}$-${∁}_{100}^{99}$×10+1,
∴a-1=103×$(1{0}^{97}-{∁}_{100}^{1}•1{0}^{96}+$…-${∁}_{100}^{97}$+494),
∴103|(a-1),
则b=103
故选:C.

点评 本题考查了二项式定理的应用、整除的方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届宁夏高三上月考一数学(文)试卷(解析版) 题型:解答题

已知函数

(1)当时,求函数上的最小值和最大值;

(2)当时,讨论函数的单调性;

(3)是否存在实数,对任意的,且,都有恒成立,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A(0,1),B(-3,4),C(2,a)三点共线,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某冻品店为了解气温对其销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:℃)的数据作为样本,如表:
x36989
y1210887
(1)利用最小二乘法求出y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)设该地1月份的日最低气温X~N(μx,σx2),其中μx近似为样本平均数$\overline{x}$,σx2近似为样本方差Sx2,该地1月份的最高气温ξ与最低气温x的关系为ξ=2x+1且ξ~N(μξ,σξ2,)),其中μξ近似为最高气温的平均数,σξ2近似为最高气温的方差sξ2,求p(10.4≤ξ≤24.2).
附:①$\sqrt{130}$≈11.5,$\sqrt{3.2}$≈1.8,若X~N(μ,σ2),
则p(μ-σ≤ξ≤μ+σ)=0.6826,p(μ-2σ≤ξ≤μ+2σ)=0.9544
附:②回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当a$∈[\frac{5}{2},\frac{17}{4}]$时,记f(x)的极大值为M,极小值为N,求M-N的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下四个命题:
①对立事件一定是互斥事件;
②函数y=x+$\frac{1}{x}$的最小值为2;
③八位二进制数能表示的最大十进制数为256;
④在△ABC中,若a=80,b=150,A=30°,则该三角形有两解.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设复数z1=i,z2=$\frac{2-3i}{|3-4i|}$,z=z1+z2,则z在复平面内对应的点位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ax2+(b-2)x+3(a≠0).
(1)若不等式f(x)>0的解集为(-1,3),求a,b的值;
(2)若f(1)=3,a>0,b>0,求$\frac{1}{a}+\frac{4}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若tanα、tanβ分别是方程x2+x-2=0的两个根,则tan(α+β)=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案