精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.
考点:函数恒成立问题,函数解析式的求解及常用方法
专题:函数的性质及应用,不等式的解法及应用
分析:(Ⅰ)根据不等式的解集,即可求f(x)的解析式;
(Ⅱ)根据不等式f(x)+t≤2恒成立,转化为求函数的最值即可得到结论.
解答: 解:(Ⅰ)∵不等式f(x)<0的解集是(0,5),
∴0,5是对应方程x2+bx+c=0的两个根,
即-b=5,c=0,
∴b=-5,c=0,
即f(x)的解析式为f(x)=x2-5x;
(Ⅱ)不等式f(x)+t≤2恒成立等价为不等式x2-5x+t-2≤0恒成立,
设g(x)=x2-5x+t-2,对称轴为x=
5
2

则由二次函数的图象可知在区间[-1,1]为减函数,
∴g(x)min=g(-1)=t+4,
∴t≤-4.
点评:本题主要考查二次函数的图象和性质,将不等式恒成立转化为求函数的最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
u
=(-2,2,5)
v
=(6,-4,4)
u
v
分别是平面α,β的法向量,则平面α,β的位置关系式(  )
A、平行
B、垂直
C、所成的二面角为锐角
D、所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台举办“青工技能大赛”,比赛共设三关,第一、二关各有两个问题,两个问题全解决方可进入下一关,第三关有三个问题,只要解决其中的两个问题,则闯关成功.每过一关可依次获得100分、300分、500分的积分.小明对三关中每个问题正确解决的概率依次为
4
5
3
4
2
3
,且每个问题正确解决与否相互独立.
(Ⅰ)求小明通过第一关但未过第二关的概率;
(Ⅱ)用X表示小明的最后积分,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设a,b,c∈(0,+∞),求证:
a2
b
+
b2
c
+
c2
a
≥a+b+c;
(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

汽车是碳排放量比较大的行业之一,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
80110120140150
100120x100160
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为
.
x
=120g/km.
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130g/km的概率是多少?
(2)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点,
(Ⅰ)求直线BC与A1C所成的角的度数. 
(Ⅱ)求证:A1C∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
+2,x∈[1,+∞)

(1)当a=
1
2
时,①用定义探讨函数f(x)在区间[1,+∞)上的单调性;
②解不等式:f(2x-
1
2
)<f(x+1006)

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Rt△AOB的三个顶点都在抛物线y2=2px上,其中直角顶点O为原点,OA所在直线的方程为y=
3
x,△AOB的面积为6
3
,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xn-
4
x
,且f(4)=3.
(1)判断f(x)的奇偶性并说明理由;
(2)判断f(x)在区间(0,+∞)上的单调性,并证明你的结论;
(3)若对任意实数x1,x2∈[1,3],有|f(x1)-f(x2)|≤t成立,求t的最小值.

查看答案和解析>>

同步练习册答案