精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a
x
+2,x∈[1,+∞)

(1)当a=
1
2
时,①用定义探讨函数f(x)在区间[1,+∞)上的单调性;
②解不等式:f(2x-
1
2
)<f(x+1006)

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
考点:函数恒成立问题,函数单调性的判断与证明
专题:函数的性质及应用,不等式的解法及应用
分析:(1)①把a=
1
2
代入函数解析式,直接由函数单调性的定义证明;
②利用函数的单调性把要求接的不等式转化为一次不等式组,求解不等式组得答案;
(2)把不等式左边的f(x)通分,由分母恒大于0,转化为分子恒大于0,然后分离变量,利用配方法求最值,则实数a的取值范围可求.
解答: 解:(1)当a=
1
2
时,f(x)=x+
1
2x
+2

①设x1>x2≥1,
f(x1)-f(x2)=x1+
1
2x1
-x2-
1
2x2

=(x1-x2)+
x2-x1
2x1x2

=(x1-x2)(1-
1
2x1x2
)

=(x1-x2)•
2x1x2-1
2x1x2

∵x1>x2≥1,则x1-x2>0,x1x2>1,2x1x2-1>0,
(x1-x2)•
2x1x2-1
2x1x2
>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在[1,+∞)上为增函数;
②∵f(x)在[1,+∞)上为增函数,
f(2x-
1
2
)<f(x+1006)?
2x-
1
2
≥1
2x-
1
2
<x+1006

解得:
3
4
≤x<
2013
2
,故原不等式解集为{x|
3
4
≤x<
2013
2
}

(2)对任意x∈[1,+∞),f(x)>0恒成立,
x2+2x+a
x
>0
在[1,+∞)上恒成立?a>-x2-2x在[1,+∞)上恒成立,
记g(x)=-x2-2x=-(x+1)2+1,∴gmax(x)=g(1)=-3,
故a>-3.
∴实数a的取值范围是(-3,+∞).
点评:本题考查恒成立问题,训练了利用定义法证明函数的单调性,考查了数学转化思想方法,训练了分离变量法和利用配方法求函数最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx+sin(ωx+
π
2
),ω>0且函数f(x)的最小正周期为2π.
(1)求f(x)的最大值及取得最大值的x值;
(2)若α∈(0,π)且f(α)=
3
4
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对一批共50件的某电器进行分类检测,其重量(克)统计如下:
质量段 [80,85) [85,90) [90,95) [95,100]
件数 5 a 15 b
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件
(Ⅰ)从该批电器中任选1件,求其为“B“型的概率;
(Ⅱ)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+bx+c,不等式f(x)<0的解集是(0,5),
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx)
,设函数f(x)=
m
n
,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(Ⅰ)求函数g(x)在区间[-
π
4
π
6
]
上的最大值,并求出此时x的取值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(
A
2
-
π
12
)+g(
π
12
+
A
2
)=-
3
,b+c=7,bc=8,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一年级60名学生参加数学竞赛,成绩全部在40分至100分之间,现将成绩分成以下6段:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],据此绘制了如图所示的频率分布直方图.
(1)求成绩在区间[80,90)的频率;
(2)从成绩大于等于80分的学生中随机选3名学生,其中成绩在[90,100]内的学生人数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+1,⊙C:(x-1)2+(y+1)2=12
(1)判断直线l与⊙C的公共点个数;
(2)求直线l被⊙C截得的最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在x轴上的双曲线C的一条渐近线L的方程为x+2y=0,若定点A(3,0)到双曲线C上的动点P的最小距离为1,求双曲线C的方程及P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,过点F2与双曲线的一条渐过线平行的直线交双曲线另一条渐近线于点M,则点M在以线段F1F2为直径的圆上,则双曲线离心率为
 

查看答案和解析>>

同步练习册答案