精英家教网 > 高中数学 > 题目详情
已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,过点F2与双曲线的一条渐过线平行的直线交双曲线另一条渐近线于点M,则点M在以线段F1F2为直径的圆上,则双曲线离心率为
 
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:由已知得出过F且与双曲线C的一条渐近线平行的直线方程,与另一条渐近线方程联立即可解得交点M的坐标,代入以线段F1F2为直径的圆的方程,即可得出离心率e.
解答: 解:不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=
b
a
(x-c)

与y=-
b
a
x
联立,可得交点M(
c
2
,-
bc
2a

∵点M在以线段F1F2为直径的圆上,
c2
4
+
b2c2
4a2
=c2

b2
a2
=3,
∴b=
3
a,
c=
a2+b2
=2a,
∴e=
c
a
=2.
故答案为:2.
点评:本题考查双曲线的几何性质,考查学生的计算能力,熟练掌握双曲线的渐近线及离心率、直线的点斜式、圆的方程是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
+2,x∈[1,+∞)

(1)当a=
1
2
时,①用定义探讨函数f(x)在区间[1,+∞)上的单调性;
②解不等式:f(2x-
1
2
)<f(x+1006)

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=lg
x
10
,f2(x)=lg10x,h(x)=lgx;
    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)设f1(x)=log2x,f2(x)=log 
1
2
x,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0),取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xn-
4
x
,且f(4)=3.
(1)判断f(x)的奇偶性并说明理由;
(2)判断f(x)在区间(0,+∞)上的单调性,并证明你的结论;
(3)若对任意实数x1,x2∈[1,3],有|f(x1)-f(x2)|≤t成立,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有八名志愿者,四名只懂英语,两名只懂法语,两名既懂英语又懂法语,现在从中选四人参与接待英国和法国代表团,每个团两名,共有
 
种不同的安排.(数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点(
1
2
,2),其横截距与纵截距分别为a、b(a、b均为正数),则使a+b≥c恒成立的c的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若2x2+ax-2a+1>0在a∈[-1,3]上恒成立,则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某岗位安排3名职工从周一到周五值班,每天安排一名职工值班,每人至少安排一天,至多安排两天,且这两天必须相邻,那么不同的安排方法有
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(m,n)是圆x2+y2=1上的任意一点,不等式m+n+c≥0恒成立,则c的取值范围是
 

查看答案和解析>>

同步练习册答案