精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+ax2-3x,且在x=1时函数f(x)取得极值.
(Ⅰ)求a的值及f(x)的极值;
(Ⅱ)若g(x)=x2-2x-1(x>0),证明:当x>1时,g(x)的图象恒在f(x)的上方.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(I)先求函数的定义域,然后根据在x=1时函数f(x)取得极值求出a的值,最后根据f′(x)<0可求出函数的减区间,f′(x)>0可求出函数的增区间;
(II)设F(x)=f(x)-g(x),利用导数研究函数F(x)的最大值,从而可判定F(x)的符号,即可证得g(x)的图象恒在f(x)图象的上方.
解答: 解:(I)由题可知,函数的定义域为{x|x>0},
f′(x)=
1
x
+2ax-3=
2ax2-3x+1
x

∵x=1处函数f(x)取得极值
∴f′(1)=0,即2a-3+1=0,解得a=1
即f′(x)=
(2x-1)(x-1)
x

当x∈(0,
1
2
)时,f′(x)>0,当x∈(
1
2
,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0
∴函数f(x)的单调增区间为(0,
1
2
),(1,+∞),函数f(x)的单调减区间为(
1
2
,1)
(II)证明:设F(x)=f(x)-g(x)=lnx-x+1,F′(x)=
1-x
x

∵当x∈(0,1)时,F′(x)>0,当x∈(1,+∞)时,F′(x)<0
∴F(x)≤F(1)=0即f(x)<g(x)恒成立,从而g(x)的图象恒在f(x)图象的上方.
点评:本题主要考查了函数的单调性和恒成立问题以及不等式的证明,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆的右准线.
(1)若椭圆C的离心率为
1
2
,直线l:x=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰好过原点,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=
3
,OM=1,则MN的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+xlnx.
(Ⅰ)当a=3时,求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)≥-6恒成立,求实数a的取值范围;
(Ⅲ)在函数f(x)的定义域内任取三个实数x1,x2,x3,设x1<x2<x3,证明:
f(x2)-f(x1)
x2-x1
f(x3)-f(x2)
x3-x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax-1
ax+1
(a>0且a≠1)
(1)求y=f(x)的反函数y=f-1(x);
(2)判断函数y=f-1(x)的奇偶性;
(3)解不等式f-1(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],求
(Ⅰ)
a
b
及|
a
+
b
|;
(Ⅱ)求函数f(x)=
a
b
-|
a
+
b
|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x+
a
x
+lnx,(a∈R)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,
5
km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)用函数单调性的定义证明f(x)在区间[1,+∞)上为增函数
(2)解不等式f(x2-2x+2)>f(5)

查看答案和解析>>

同步练习册答案