精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+ax+blnx(x>0,实数a,b为常数),若a+b=-2,且b<1,讨论f(x)的单调性.
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:求出导函数的根,讨论根在不在定义域内;若根在定义域内,讨论两根的大小;判断根左右两边导函数的符号,据单调性与导函数的关系求出单调性.
解答: 解:由于a+b=-2,则a=-2-b,
∴f(x)=x2-(2+b)x+blnx,
∴f′(x)=2x-(2+b)+
b
x

=
(2x-b)(x-1)
x

令f′(x)=0,解得:x=
b
2
,x=1,
∵b<1,∴
b
2
1
2
<1,
b
2
≤0时,
∴f(x)在(0,1)递减,在(1,+∞)递增;
②0<
b
2
1
2
即0<b<1时,
∴函数f(x)的单调递增区间为(0,
b
2
),(1,+∞),
单调递减区间为(
b
2
,1).
点评:本题考查利用导数研究函数的性质:求极值,求单调区间.考查分类讨论时注意分类的起点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求三棱锥D-BAC的体积;
(2)求证:AF∥平面BCE;
(3)求二面角B-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某发射装置上有一个特殊的按键,在发射装置的屏幕上显示正整数n时按下这个键,会等可能的将其替换为0~n-1中的任意一个数,反复按这个键使得最终显示0,我们把这一操作称为“还原”操作.
(Ⅰ)设初始值为15,求在“还原”操作中出现9的概率;
(Ⅱ)当初始值为4时,进行“还原”操作,记操作次数为ξ,求ξ的概率分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(Ⅰ)求直线EC与平面ABE所成角的正切值;
(Ⅱ)线段EA上是否存在点F,使EC∥平面FBD?存在请确定具体位置,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(π-α)=2,计算:
(1)
sinα+2cosα
sinα-2cosα

(2)
3sin2(π+α)-2cos2(π-α)+sin(2π-α)cos(π+α)
1+2sin2α+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=-2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(ii)若b=-1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义域在(0,+∞)上的增函数,且满足f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1),f(4)的值. 
(2)如果f(x)-f(x-3)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x,x<0
lnx,x>0

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x≥1时,证明:曲线f(x)与g(x)=x-1仅有一个公共点;
(Ⅲ)设A(x1,f(x1)),B(x2,f(x2))(x1<x2<0)为曲线f(x)上的两点,且曲线f(x)在点A,B处的切线互相垂直,求x2-x1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=pn+q(n∈N*,p>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求数列{bn}的前2m项和公式.

查看答案和解析>>

同步练习册答案