精英家教网 > 高中数学 > 题目详情
若数列{an}中an=-n2+6n+7,则其前n项和Sn取最大值时,n=
 
考点:数列的求和
专题:等差数列与等比数列
分析:数列{an}中,由an=-n2+6n+7=-(n-3)2+16,知a6=7,a7=0,a8=-9,由此能求出前n项和Sn取最大值时,n的值.
解答: 解:数列{an}中,
∵an=-n2+6n+7=-(n-3)2+16,
∴由an≥0,得n-3≤4.
∴a6=7,a7=0,a8=-9,
∴前n项和Sn取最大值时,n=6,或n=7.
故答案为:6或7.
点评:本题考查数列的应用,解题时要认真审题,仔细解答,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,且a1,a4,a13成等比数列,S3=15.
(1)求数列{an}的通项公式;
(2)数列{bn}满足对于任意n∈N+都有Sn=2n-1,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2x
-lnx的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+10,在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

单位向量
i
j
相互垂直,向量
α
=3
i
-4
j
,则|
α
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过抛物线y=
1
4
x2的焦点F的直线l与抛物线和圆x2+(y-1)2=1交于A,B,C,D四点,则
AB
DC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,有以下命题:
①若a>b,则ac2>bc2
②若ac2>bc2,则a>b;
③若a>b,则a•2c>b•2c
则正确命题序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为2,若一个平面与正方体ABCD-A1B1C1D1的12条棱所成的角都为α,则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距为10,一条渐近线的斜率为
3
4
,则此双曲线的标准方程为
 
,焦点到渐近线的距离为
 

查看答案和解析>>

同步练习册答案