| 分组 | 频数 | 频率 |
| [80,90) | ① | ② |
| [90,100) | 0.050 | |
| [100,110) | 0.200 | |
| [110,120) | 36 | 0.300 |
| [120,130) | 0.275 | |
| [130,140) | 12 | ③ |
| [140,150) | 0.50 | |
| 合计 | ④ |
分析 (1)根据频率分步表中所给的频率和频数,根据样本容量,频率和频数之间的关系得到表中要求填写的数字.
(2)根据所给的频率分布表所给的数据,画出频率分步直方图.
(3)用这个区间上的频率乘以样本容量,得到这个区间上的频数,用每一个区间上的中间值,乘以这个区间的频率,得到平均值,把各个部分的频率相加,得到要求的频率
解答 解:(1)先做出③对应的数字,$\frac{12}{36}×0.3$=0.1,
∴②处的数字是1-0.05-0.2-0.3-0.275-0.1-0.05=0.025
∴①处的数字是0.025×120=3,
④处的数字是1,
故答案为:3;0.025;0.1;1
(2)[80,150]上的频率分布直方图如下图所示:![]()
(3)①(0.275+0.1+0.05)×6000=2550,
②0.3×0.275+0.1+0.05=0.2325
点评 本题考查频率分步直方图,考查画出频率分步直方图,考查利用频率分步直方图,本题是一个基础题,题目虽然有点大,但是考查的知识点比较简单.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若命题“p∧q”为假,则“p∨q”也为假 | |
| B. | 命题“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”的否定是“?x∈R,x2+x+1<0” | |
| C. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
| D. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7\sqrt{2}}{10}$ | B. | $\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com