分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得在区间[0,π]上的最小值.
解答 解:将函数f(x)=2sin($\frac{1}{2}x+\frac{π}{6}$)图象上的点纵坐标不变,横坐标变为原来的$\frac{1}{2}$,得到函数g(x)=2sin(x+$\frac{π}{6}$)的图象,
在区间[0,π]上,x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],故当x+$\frac{π}{6}$=$\frac{7π}{6}$时,函数g(x)取得最小值为-1,
故答案为:-1.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | $\frac{27}{4}$ | C. | $\frac{27}{2}$ | D. | 27 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$) | B. | (0,$\frac{1}{2}$) | C. | (-∞,0)∪(0,+∞) | D. | (-∞,0)∪(0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com