精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow{a}•\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且(3$\overrightarrow{a}+2\overrightarrow{b}$)$⊥(λ\overrightarrow{a}-\overrightarrow{b})$,则λ的值是$\frac{3}{2}$.

分析 由条件利用两个向量垂直的性质可得(3$\overrightarrow{a}+2\overrightarrow{b}$)•(λ$\overrightarrow{a}$-$\overrightarrow{b}$)=0,由此求得 λ的值.

解答 解:由题意(3$\overrightarrow{a}+2\overrightarrow{b}$)$⊥(λ\overrightarrow{a}-\overrightarrow{b})$可得(3$\overrightarrow{a}+2\overrightarrow{b}$)•(λ$\overrightarrow{a}$-$\overrightarrow{b}$)=3λ•${\overrightarrow{a}}^{2}$+(2λ-3)$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=12λ+(2λ-3)×0-2×9=0,∴λ=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.

点评 本题主要考查两个向量垂直的性质,两个向量的数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数y=$\frac{1}{{x}^{2}+x+a}$的定义域是R.则a的取值范围是$(\frac{1}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A=B={(x,y)|x,y∈R},f是A到B的一个映射,且满足f:(x,y)→(xy,x-y),若集合B中的元素(a,b)在集合A中只有唯一的元素与之对应,则a,b应满足的关系式为(  )
A.b2-2a=0B.b2+4a=0C.b2+2a=0D.b2-4a=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}中,a1=2,对于任意的p,q∈N*,都有ap+q=ap+aq,则数列{an}的通项公式为an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,cosx),$\overrightarrow{b}$=(0,sinx),$\overrightarrow{c}$=(sinx,cosx),$\overrightarrow{d}$=(sinx,sinx)
(1)当x=-$\frac{π}{4}$时,求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)当x∈[0,$\frac{π}{2}$]时,求$\overrightarrow{c}•\overrightarrow{d}$的最大值;
(3)设函数f(x)=($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{c}$+$\overrightarrow{d}$),将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,令$\overrightarrow{m}$=(s,t),求|$\overrightarrow{m}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在平行四边形ABCD中,$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{2}$$\overrightarrow{AD}$,BF与DE交于点M,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AM}$;
(2)在线段AB上取一点P,在线段AD上取一点Q,使PQ过点M,设$\overrightarrow{AP}$=p$\overrightarrow{AB}$,$\overrightarrow{AQ}$=q$\overrightarrow{AD}$,求证:$\frac{1}{7p}$+$\frac{3}{7q}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{\sqrt{x-{x}^{2}}}$的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.指出函数f(x)=$\frac{{x}^{2}+4x+5}{{x}^{2}+4x+4}$的单调区间,并比较f(-π)与f(-$\frac{\sqrt{2}}{2}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两个变量y与x的回归模型中,分别选择了4个不同模型,计算出它们的相关指数R2如下,其中拟合效果最好的模型是(  )
A.模型1(相关指数2为0.97)B.模型2(相关指数R2为0.89)
C.模型3(相关指数R2为0.56 )D.模型4(相关指数R2为0.45)

查看答案和解析>>

同步练习册答案