精英家教网 > 高中数学 > 题目详情
求函数f(x)=x2-2x-3,x∈[0,b]的值域.
考点:二次函数的性质
专题:函数的性质及应用
分析:通过讨论b的范围结合二次函数的性质从而得到函数的值域.
解答: 解:函数f(x)=x2-2x-3=(x-1)2-4,
当b≤1时,函数f(x)在[0,b]递减,
∴f(x)max=f(0)=-3,f(x)min=f(b)=b2-2b-3,
当1<b≤2时,函数f(x)在[0,1)递减,在(1,b]递增,
∴f(x)max=f(0)=-3,f(x)min=f(1)=-4,
当b>2时,函数f(x)在[0,1)递减,在(1,b]递增,
∴f(x)max=f(b)=b2-2b-3,f(x)min=f(1)=-4.
点评:本题考查了二次函数的性质,考查了分类讨论思想,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x•sinx,有下列三个结论:
①存在常数T>0,对任意的实数x,恒有f(x+T)=f(x)成立;
②对任意给定的正数M,都存在实数x0,使得|f(x0)|≥M;
③直线y=x与函数f(x)的图象相切,且切点有无数多个.
则所有正确结论的序号是(  )
A、①B、②C、③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
π
6
,tanan+1=secan>0(n∈N*),(这里:secα=
1
cosα
,secα是表示α的正割)
(1)证明数列{tan2an}为等差数列;
(2)求正整数m,使得sina1•sina2…sinam=
1
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+(a+1)2+|x+a-1|(a∈R).
(1)若a为大于等于
3
2
的常数,求函数f(x)的最小值,并记为m(a);
(2)若函数f(x)的最小值大于3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人参加英语口语考试,已知在备选的10道试题中,甲能答对其中的6道,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)若一次考试中甲答对的题数为X,求X的概率分布和均值EX;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=
6
3
,过F1 的直线交椭圆于A,B两点,且△ABF2的周长为4
3

(1)求椭圆E的方程;
(2)过点P(0,2)的动直线l与椭圆E相交于C,D两点,O为原点,求△COD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx+3,g(x)=x2+2x-m,设G(x)=f(x)-g(x)-1
①若|G(x)|在区间[-1,0]上是减函数,求实数m的取值范围;
②是否存在正整数a,b使得a≤G(x)≤b的解集恰是[a,b]?若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.
(1)求证:CD⊥平面A1ABB1
(2)求证:AC1∥平面CDB1
(3)线段AB上是否存在点M,使得A1M⊥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-2x2+x+6,则f(x)在点P(-1,2)处的切线与坐标轴围成的三角形面积等于(  )
A、4
B、5
C、
25
4
D、
13
2

查看答案和解析>>

同步练习册答案