在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD,如图11-12。
![]()
(1)证明:AB⊥平面VAD;
(2)求二面角A-VD-B的大小。
科目:高中数学 来源: 题型:
如图10-15,在
棱长为4的正方体ABCD—A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP。
![]()
(1)求直线AP与平面BCC1B1所成角的大小(结果用反三角表示);
(2)设O点在平面D1AP上的射影为H,求证:D1H⊥AP;
(3)求点P到平面ABD1的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,直三
棱柱ABC—A1B1C1中,∠ACB=90°,BC=AC=2,AA1=4,D为棱CC1上一动点,M、N分别为△ABD、△A1B1R的重心。
![]()
(1)求证:MN⊥BC;
![]()
(2)若二面角C—AB—D的大小为arctan
,求C1到平面A1B
1D的距离;
(3)若点C在平面ABD上的射影恰好为M,试判断点C1在平面A1B1D上的射影是否为N?并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
![]()
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C-DF-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
在正三棱柱ABC-A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1积与平面CBC1所成的角为 ( )
![]()
A.30° B.45°
C.60° D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
已知ABCD-A1B1C1D1为正方体,①(
+
+
)2=3
2;②
·(
-
)=0;③向量
与向量
的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|
·
·
|.其中正确命
题的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
样本总体中有100个个体,随机编号为0,1,2,…,9
9,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组抽取的号码为m那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com