分析 由条件利用韦达定理求得α、β为第四象限角;再结合tan(α+β)=$\sqrt{3}$,α+β∈(-π,0),可得α+β的值.
解答 解:由题意可得tanα+tanβ=-3$\sqrt{3}$,tanα•tanβ=4,再根据-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$$<β<\frac{π}{2}$,
可得α、β∈(-$\frac{π}{2}$,0),即α、β均为第四象限角.
再结合tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\sqrt{3}$,α+β∈(-π,0),
可得α+β=-$\frac{2π}{3}$.
点评 本题主要考查韦达定理,两角和差的正切公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V1>V2 | B. | V1<V2 | ||
| C. | V1=V2 | D. | V1,V2大小关系不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9-4$\sqrt{5}$ | B. | 4$\sqrt{5}$-9 | C. | 5$\sqrt{2}$-9 | D. | 9+4$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com