精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是(  )
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$}D.[$\frac{1}{3}$,$\frac{2}{3}$)∪{$\frac{3}{4}$}

分析 利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a的范围.

解答 解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,
函数f(x)在R上单调递减,则:
$\left\{\begin{array}{l}{\frac{3-4a}{2}≥0}\\{0<a<1}\\{{0}^{2}+(4a-3)•0+3a≥lo{g}_{a}(0+1)+1}\end{array}\right.$;
解得,$\frac{1}{3}≤a≤\frac{3}{4}$;
由图象可知,在[0,+∞)上,|f(x)|=2-x有且仅有一个解,
故在(-∞,0)上,|f(x)|=2-x同样有且仅有一个解,
当3a>2即a>$\frac{2}{3}$时,联立|x2+(4a-3)x+3a|=2-x,
则△=(4a-2)2-4(3a-2)=0,
解得a=$\frac{3}{4}$或1(舍去),
当1≤3a≤2时,由图象可知,符合条件,
综上:a的取值范围为[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$},
故选:C.

点评 本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{i}$,$\overrightarrow{j}$是两个不共线的向量,若$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,则(  )
A.A、B、C三点共线B.A、B、D三点共线C.A、C、D三点共线D.B、C、D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.
(Ⅰ)证明:AC⊥HD′;
(Ⅱ)若AB=5,AC=6,AE=$\frac{5}{4}$,OD′=2$\sqrt{2}$,求五棱锥D′-ABCFE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,B=$\frac{π}{4}$,BC边上的高等于$\frac{1}{3}$BC,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.-$\frac{\sqrt{10}}{10}$D.-$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆的方程x2+y2=1,直线y=x+b,当b为何值时:
(1)圆与直线有两个公共点;
(2)圆与直线只有一个公共点;
(3)圆与直线没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若7个人排成一排照相,则甲正好站中间的概率是$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax-ex没有极值点,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

同步练习册答案