精英家教网 > 高中数学 > 题目详情
17.如图,D是△ABC内一点,角A,B,C的对边分别是a,b,c,且满足∠D=2∠B,cos∠D=-$\frac{1}{3}$,AD=2,△ACD的面积是4$\sqrt{2}$.
(1)求线段AC的长;
(2)若BC=4$\sqrt{3}$,求线段AB的长.

分析 (1)由题意求出sin∠D,根据AD=2,△ACD的面积是4$\sqrt{2}$即可求出CD的长度.利用余弦定理可得AC
(2)根据∠D=2∠B,利用二倍角公式求出sinB的值,由正弦定理可得AB.

解答 解:(1)由cos∠D=-$\frac{1}{3}$,可得sin∠D=$\frac{2\sqrt{2}}{3}$,
,△ACD的面积是4$\sqrt{2}$=$\frac{1}{2}$AD×CD×sin∠D
解得:CD=6
在△ACD中由余弦定理:AC2=AD2+CD2-2×AD×CD×cos∠D=48
∴AC=4$\sqrt{3}$
(2)由已知:∠D=2∠B,即cos∠D=cos2∠B=1-2sin2B=$-\frac{1}{3}$.
∴sinB=$\frac{\sqrt{6}}{3}$
在△ABC中,BC=4$\sqrt{3}$,AC=4$\sqrt{3}$
即AC=BC,
由正弦定理:$\frac{AB}{sin∠ACB}=\frac{AB}{sin(π-2B)}=\frac{AB}{sin∠D}=\frac{AC}{sin∠B}$
即$\frac{AB}{\frac{2\sqrt{2}}{3}}=\frac{4\sqrt{3}}{\frac{\sqrt{6}}{3}}$
∴AB=8(也可以用等腰三角形求线AB的一半).

点评 本题主要考查了正余弦定理以及二倍角公式的灵活运用和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=lg(10x+1)-ax是偶函数,$g(x)=\frac{{{4^x}+b}}{2^x}$是奇函数,则a+b的值为(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),则满足条件的a,b,c的组数为(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{100}+\frac{y^2}{36}=1$的两个焦点为F1、F2,过F2引一条斜率不为零的直线与椭圆交于点A、B,则三角形ABF1的周长是(  )
A.20B.24C.32D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
年龄(岁)3035404550
健康消费(百元)58101418
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,$AE=\frac{3}{2},cosB=\frac{{2\sqrt{7}}}{7},∠ADB=\frac{2π}{3}$.
(1)求sin∠BAD;
(2)求AD及DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足不等式组$\left\{\begin{array}{l}x+2y-5≥0\\ 2x+y-4≤0\\ x-y+3≥0\end{array}\right.$,则x+y的最小值是(  )
A.3B.-3C.$\frac{7}{3}$D.-$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)满足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题中:
①偶函数的图象一定与y轴相交;
②奇函数的图象一定过原点;
③若奇函数f(x)=a-$\frac{2}{{{2^x}+1}}$,则实数a=1;
④图象过原点的奇函数必是单调函数;
⑤函数y=2x-x2的零点个数为2;
⑥互为反函数的图象关于直线y=x对称.
上述命题中所有正确的命题序号是③⑥.

查看答案和解析>>

同步练习册答案