精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数,且.
(Ⅰ)求的值,并用分段函数的形式来表示
(Ⅱ)在如图给定的直角坐标系内作出函数的草图;

(III)由图象写出函数的奇偶性及单调区间.

(1)
(2)

(3)奇偶性:非奇非偶,递增区间:  递减区间:

解析试题分析: (I)先由f(1)=0,求出m=1,然后去绝对值转化为分段函数.
(II)分别作出的图像,然后观察图像从图像上判断是否关于原点对称或y轴对称,从而判断出是否具有奇偶性,再从图像观察得到单调区间..
(1); …………………………2分
 ; ………………………………………5分
(2)函数图象如图: ……8分

(3)奇偶性:非奇非偶…………………………………………………………………………10分
函数单调区间: 递增区间:  递减区间:. …………12分
考点:分段函数的图像与性质.
点评:分段函数是一个函数,可以分段研究,求最值时要求出每一段上的最值,然后再从每段上的最值求得整个函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数是奇函数:
(1)求实数的值; (2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数满足
(1)求常数的值;  
(2)求使成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)

(1)
(2),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
,且,定义在区间内的函数是奇函数.
(1)求的取值范围;
(2)讨论函数的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如下左图,已知底角为450的等腰三角形ABC,底边AB的长为2,当一条垂直于AB的直线L从左至右移动时,直线L把三角形ABC分成两部分,令AD=,
(1) 试写出左边部分的面积与x的函数解析式;
(2) 在给出的坐标系中画出函数的大致图象。
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断并利用定义证明f(x)=在(-∞,0)上的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数f(x)=.
(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f+f(x)=0.

查看答案和解析>>

同步练习册答案