精英家教网 > 高中数学 > 题目详情
7.如图在区域Ω={(x,y)|-2≤x≤2,0≤y≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数为(  )
A.300B.400C.500D.600

分析 利用定积分,求出阴影部分的面积,再利用几何概型,即可得出结论.

解答 解:区域Ω的面积为S1=16.
图中阴影部分的面积:S2=S1-2${∫}_{0}^{2}{x}^{2}dx$=$\frac{32}{3}$.
设落在阴影部分的豆子数为m,由已知条件$\frac{m}{900}$=$\frac{{S}_{2}}{{S}_{1}}$,即m=600.
因此落在图中阴影部分的豆子约为600粒.

点评 本题考查利用积分求解曲面的面积,几何概型的计算公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知a=($\frac{1}{5}$)-2,b=log5${\;}{\frac{1}{3}}$,c=log53,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线的两个焦点,P,Q是过点F1且垂直于实轴所在直线的双曲线的弦,∠PF2Q=90°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{2}+1$C.$\sqrt{2}-1$D.$\frac{{\sqrt{2}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,且a1=2,S3=12.
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn,求T2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+bx,曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-2.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:AE⊥平面PCD;
(3)若直线AC与平面PCD所成的角为30°,求$\frac{CD}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列推理中属于归纳推理且结论正确的是①
①设数列{an}的前n项和为Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推断:Sn=n2
②由f(x)=xcos x满足f(-x)=-f(x)对任意 x∈R都成立,推断:f(x)=xcos x为奇函数
③由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab
④由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N+,(n+1)2>2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,则a2015=(  )
A.2B.-2C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi.则a+b的值为(  )
A.0B.=1C.±1D.1

查看答案和解析>>

同步练习册答案