精英家教网 > 高中数学 > 题目详情
计算:cos79°cos56°-cos11°cos34°=
 
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:利用诱导公式把cos11°和cos34°分别转化为sin79°和sin56°,进而利用余弦的两角和公式化简即可.
解答: 解:cos79°cos56°-cos11°cos34°=cos79°cos56°-sin79°sin56°=cos(79°+56°)=cos135°=-
2
2

故答案为:-
2
2
点评:本题主要考查了两角和与差的余弦函数的应用.考查了学生对基础公式的熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+bx+c与直线y=0在原点处相切,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个边长分别为4和6的矩形卷成一个圆柱形,则此圆柱的最大体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
(x-1)-1
log3(3x-2)
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知空间四边形ABCD,F为BC的中点,E为AD的中点,若
EF
=λ(
AB
+
DC
),则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两条平行线3x-4y+1=0与6x-8y-2=0之间的距离为(  )
A、
2
5
B、2
C、
3
5
D、
3
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,f(2)=0,xf′(x)-f(x)>0(x>0),则不等式xf(x)>0的解集是(  )
A、(-2,2)
B、(-2,0 )∪(0,2)
C、(-∞,-2 )∪(2,+∞)
D、(-2,0 )∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y都为正数且x+y=1,则
1
x
+
4
y
的最小值是(  )
A、1B、9C、5D、4

查看答案和解析>>

同步练习册答案