精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系中,已知点A(1,0),点B在直线l:x=-1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.
(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点P(1,2)作轨迹E的切线,求切线方程.

分析 (1)利用MA|=|MB|,动点M的轨迹E是以A(1,0)为焦点,直线l:x=-1为准线的抛物线,求出轨迹方程即可.
(2)设经过点P的切线方程为y-2=k(x-1),与抛物线联立利用相切,判别式为0,求解即可.

解答 解:(1)依题意,得|MA|=|MB|…(1分)
∴动点M的轨迹E是以A(1,0)为焦点,直线l:x=-1为准线的抛物线,…(3分)
∴动点M的轨迹E的方程为y2=4x.…(5分)
(2)设经过点P的切线方程为y-2=k(x-1),….(6分)
联立抛物线y2=4x消去x得:ky2-4y-4k+8=0,…(10分)
由△=16-4k(-4k+8)=0,得k=1,…(12分)
∴所求切线方程为:x-y+1=0.…(13分)

点评 本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e2-e1的取值范围是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2x2-a-1)ex
(Ⅰ)若函数f(x)在[-2,2]上是单调增函数,求实数a的取值范围;
(Ⅱ)若f(x)有两个不同的极值点m,n,满足m+n≤mn+1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,若a4a6a8a10a12=32,则$\frac{{{a_{10}}^2}}{{{a_{12}}}}$的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知点A(1,0),点B在直线l:x=-1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.
(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点P (1,2)作两条直线分别与轨迹E相交于C(x1,y1),D(x2,y2)两点.试探究:当直线PC,PD的斜率存在且倾斜角互补时,直线CD的斜率是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线l的倾斜角为60°,和直线l平行且经过点(-3,2)的直线方程是(  )
A.y=$\sqrt{3}x+3\sqrt{3}$+2B.y=$\frac{{\sqrt{3}}}{3}x+\sqrt{3}$+2C.y=$\sqrt{3}x-3\sqrt{3}$-2D.y=$\frac{{\sqrt{3}}}{3}x-\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M为线段AB的中点.
(1)求异面直线DD1与MC1所成的角;
(2)求直线MC1与平面BB1C1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:
x2=8(y-m)(m>0)
(1)求轨迹C的方程;
(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;
(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2>k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

同步练习册答案