精英家教网 > 高中数学 > 题目详情
2.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M为线段AB的中点.
(1)求异面直线DD1与MC1所成的角;
(2)求直线MC1与平面BB1C1C所成的角.

分析 (1)说明∠MC1C就是异面直线DD1 与MC1所成的角,连接MC,在△C1MC中求解即可.
(2)连接BC1,说明∠MC1B为直线MC1与平面BB1C1C所成的角,由△MC1B为Rt△.求解即可.

解答 解:(1)因为C1C∥D1D,所以∠MC1C就是异面直线
DD1 与MC1所成的角,…(3分)
连接MC,则△C1MC为Rt△.易得MC=$\sqrt{3}$,MC1=2,
所以∠MC1C=60
即异面直线DD1 与MC1所成的角为60°;…(6分)
(2)因为MB⊥平面B1C1CB,连接BC1,则∠MC1B为直线MC1与平面BB1C1C所成的角,…(9分)
由△MC1B为Rt△.易得BC1=$\sqrt{3}$,MC1=2,所以∠MC1B=30
即直线MC1与平面BB1C1C所成的角为30°;…(12分)

点评 本题考查直线与平面所成角,异面直线所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知抛物线y=$\frac{1}{2}$x2的焦点与椭圆$\frac{y^2}{m}$+$\frac{x^2}{2}$=1的一个焦点重合,则m=(  )
A.$\frac{7}{4}$B.$\frac{127}{64}$C.$\frac{9}{4}$D.$\frac{129}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥A-BCD中,AB=AC,BC=CD,∠BCD=60°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)再若AB=CB=4,AD=2$\sqrt{3}$,求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知点A(1,0),点B在直线l:x=-1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.
(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点P(1,2)作轨迹E的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过点P(2,3),并且在两坐标轴上的截距相等的直线方程是(  )
A.x-y+1=0B.x-y+1=0或3x-2y=0
C.x+y-5=0D.x+y-5=0或3x-2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n表示两条不同的直线,α、β表示两个不同的平面,且m⊥α,n?β,则“α⊥β”是“m∥n”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的前n项和为Sn,且$\frac{{S}_{4}}{{S}_{8}}$=$\frac{1}{3}$,那么$\frac{{S}_{8}}{{S}_{16}}$=$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{m•{2^x}+n}}{{{2^x}+m}}$(m≠0)是定义在R上的奇函数
(1)求m,n;
(2)判断函数f(x)的单调性;
(3)解关于t的不等式f(t2-3)<f(2t)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别是A、B、C的对边,且a2+c2-b2+ac=0
(1)求角B的大小;
(2)若△ABC中sinC=2sinA,且b=$\sqrt{14}$,求a的值.

查看答案和解析>>

同步练习册答案