精英家教网 > 高中数学 > 题目详情
12.已知抛物线y=$\frac{1}{2}$x2的焦点与椭圆$\frac{y^2}{m}$+$\frac{x^2}{2}$=1的一个焦点重合,则m=(  )
A.$\frac{7}{4}$B.$\frac{127}{64}$C.$\frac{9}{4}$D.$\frac{129}{64}$

分析 通过抛物线的表达式可知椭圆的一个焦点,利用长半轴长、短半轴长及半焦距之间的关系计算即得结论.

解答 解:∵抛物线y=$\frac{1}{2}$x2的焦点为(0,$\frac{1}{2}$),
∴m-2=$(\frac{1}{2})^{2}$,
∴m=$(\frac{1}{2})^{2}$+2=$\frac{9}{4}$,
故选:C.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1的棱长为2$\sqrt{3}$,以顶点A为球心,4为半径作一个球,则图中球面与正方体的表面相交所得的两段弧长之和等于(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.πD.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的左、右焦点分别为F1、F2,离心率为$\frac{1}{2}$,P是椭圆上一点,且△PF1F2面积的最大值等于$\sqrt{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l:y=kx+m与以线段F1F2为直径的圆O相切,并与椭圆E相交于不同的两点A、B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$.求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e2-e1的取值范围是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某几何体的三视图如图所示,则该几何体的体积为$\frac{\sqrt{3}π}{4}$;表面积为$\frac{9π}{4}+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,椭圆左、右顶点分别为A、B,且A到椭圆两焦点的距离之和为4.设P为椭圆上不同于A、B的任一点,作PQ⊥x轴,Q为垂足.M为线段PQ中点,直线AM交直线l:x=b于点C,D为线段BC中点(如图).
(1)求椭圆的方程;
(2)证明:△OMD是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合.椭圆C1与抛物线C2在第一象限内的交点为P,|PF|=$\frac{5}{3}$.
(1)求椭圆C1的方程;
(2)已知直线x-y+m=0与椭圆C1交于不同的两点A、B,且线段AB的中点不在圆x2+y2=$\frac{25}{49}$内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2x2-a-1)ex
(Ⅰ)若函数f(x)在[-2,2]上是单调增函数,求实数a的取值范围;
(Ⅱ)若f(x)有两个不同的极值点m,n,满足m+n≤mn+1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M为线段AB的中点.
(1)求异面直线DD1与MC1所成的角;
(2)求直线MC1与平面BB1C1C所成的角.

查看答案和解析>>

同步练习册答案