精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{{m•{2^x}+n}}{{{2^x}+m}}$(m≠0)是定义在R上的奇函数
(1)求m,n;
(2)判断函数f(x)的单调性;
(3)解关于t的不等式f(t2-3)<f(2t)

分析 (1)根据奇函数的性质,f(0)=0,f(1)+f(-1)=0得到关于m,n的方程组,解得即可.
(2)法一,根据指数和幂函数的性质即可判断,法二,利用定义即可判断;
(3)由(2)很据函数的单调性,可得关于t的不等式,解得即可.

解答 解:(1)由题知f(0)=0,
即m+n=0,
又f(1)+f(-1)=0,
即$\frac{2m+n}{2+m}+\frac{{\frac{1}{2}m+n}}{{\frac{1}{2}+m}}=0$,
∴m=1,n=-1;
(2)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}=1-\frac{2}{{{2^x}+1}}$,函数f(x)在R上单增,判断方法如下:
(法一)y=2x+1单增且恒有y>0,∴$y=-\frac{2}{{{2^x}+1}}$也单增∴f(x)在R上单增;
(法二)设x1<x2,则$f({x_1})-f({x_2})=2(\frac{1}{{{2^{x_2}}+1}}-\frac{1}{{{2^{x_1}}+1}})=\frac{{2({2^{x_1}}-{2^{x_2}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}<0$,即f(x1)<f(x2),
∴f(x)在R上单增;
(3)∵f(x)在R上单增,
∴t2-3<2t,
解得-1<t<3.

点评 本题考查了奇函数的性质,以及函数的单调性,不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2x2-a-1)ex
(Ⅰ)若函数f(x)在[-2,2]上是单调增函数,求实数a的取值范围;
(Ⅱ)若f(x)有两个不同的极值点m,n,满足m+n≤mn+1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M为线段AB的中点.
(1)求异面直线DD1与MC1所成的角;
(2)求直线MC1与平面BB1C1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.P是圆x2+y2=4上任意一点,P在x轴上的射影为M点,N是PM的中点,点N的轨迹为曲线C,曲线C1的方程为:
x2=8(y-m)(m>0)
(1)求轨迹C的方程;
(2)若曲线C与曲线C1只有一个公共点,求曲线C1的方程;
(3)在(2)的条件下,求曲线C和曲线C1都只有一个交点的直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=cos(2x+$\frac{π}{3}$)的图象向左平移φ个单位后关于原点对称(|φ|<$\frac{π}{4}$),则实数φ可以为(  )
A.$-\frac{π}{6}$B.$-\frac{π}{12}$C.$\frac{π}{12}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正方体ABCD-A1B1C1D1的棱长为1,则异面直线BD1与AD所成角的余弦值是$\frac{\sqrt{3}}{3}$,该正方体的外接球半径为$\frac{\sqrt{3}}{2}$,内切球的体积是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥S-ABCD的底面为菱形,且∠ABC=60°,AB=AC=2,SA=SB=$\sqrt{2}$
(Ⅰ)求证:平面SAB⊥平面ABCD;
(Ⅱ)求二面角A-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2>k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校重视高三学生对数学选修课程的学习,在选修系列4中开设了4-1,4-2,4-3,4-4,4-5共5个专题课程,要求每个学生必须且只能选修其中1门课程,设A、B、C、D是高三某班的4名学生.
(1)求恰有2个专题没有被这4名学生选择的概率;
(2)设这4名学生中选择4-4专题的人数为ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

同步练习册答案