精英家教网 > 高中数学 > 题目详情
16.正方体ABCD-A1B1C1D1的棱长为1,则异面直线BD1与AD所成角的余弦值是$\frac{\sqrt{3}}{3}$,该正方体的外接球半径为$\frac{\sqrt{3}}{2}$,内切球的体积是$\frac{π}{6}$.

分析 利用平移法得出∠CBD1(或其补角)为异面直线BD1与AD所成角,进而可求异面直线BD1与AD所成角的余弦值;求出正方体的对角线长,可得正方体的外接球半径;利用体积公式求内切球的体积.

解答 解:∵BC∥B1C1
∴∠CBD1(或其补角)为异面直线BD1与AD所成角
∵BC=a,BD1=$\sqrt{3}$a,BC⊥CD1
∴cos∠CBD1=$\frac{\sqrt{3}}{3}$,
正方体的对角线长为$\sqrt{3}$,∴该正方体的外接球半径为$\frac{\sqrt{3}}{2}$,
内切球的体积是$\frac{4}{3}π×(\frac{1}{2})^{3}$=$\frac{π}{6}$.
故答案为:$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{2}$,$\frac{π}{6}$.

点评 本题考查异面直线所成角,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,椭圆:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=4的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=$\frac{\sqrt{2}}{2}$x+m交椭圆于A、B两点,椭圆上一点P($\sqrt{2}$,1),求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n表示两条不同的直线,α、β表示两个不同的平面,且m⊥α,n?β,则“α⊥β”是“m∥n”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中一定正确的是(  )
A.若a>b,则$\frac{1}{a}$<$\frac{1}{b}$B.若ac2>bc2,则a>bC.若a>b,则ac>bcD.若a>b,则(${\frac{1}{2}}$)a>(${\frac{1}{2}}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{m•{2^x}+n}}{{{2^x}+m}}$(m≠0)是定义在R上的奇函数
(1)求m,n;
(2)判断函数f(x)的单调性;
(3)解关于t的不等式f(t2-3)<f(2t)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.命题p:直线y=kx+2与圆x2+y2=1相交于A,B两点;命题q:曲线$\frac{{x}^{2}}{16-k}$-$\frac{{y}^{2}}{k}$=1表示焦点在x轴上的双曲线,若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.根据如下样本数据:
x345678
y-3.0-2.00.5-0.52.54.0
得到的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,则(  )
A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanθ=-$\frac{1}{3}$,则$\frac{7sinθ-3cosθ}{4sinθ+5cosθ}$的值为$-\frac{16}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(2,0),B(0,4),点P是过点M(0,-1)的直线l上任意一点,∠APB是锐角,求l的斜率的取值范围.

查看答案和解析>>

同步练习册答案