精英家教网 > 高中数学 > 题目详情
7.已知集合A={0,1,a},B={0,3,3a},若A∩B={0,3},则A∪B={0,1,3,9}.

分析 根据集合的基本运算进行求解即可.

解答 解:∵A∩B={0,3},
∴a=3,
则B={0,3,9},
则A∪B={0,1,3,9},
故答案为:{0,1,3,9},

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx+$\frac{1}{x}$,且2<p<q.,求证:对于x∈(p,q),有$\frac{f(x)-f(p)}{x-p}$>$\frac{f(x)-f(q)}{x-q}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=ax3+ax2+x-1在实数R上是增函数,则实数a的取值范围是(  )
A.[-1,2]B.[0,3]C.[2,5]D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.5位同学排队,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在排头,则排法种数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线t2y2-x2=t2(t≠0)经过点$(2,\sqrt{2})$,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰△ABC中,角A,B,C的对边分别为a,b,c,若sinB=sinAcosC-$\frac{1}{2}$sinC,且a=$\sqrt{3}$,则△ABC的面积为(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{4}$
C.$\sqrt{3}$D.条件不足,无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)满足f(0)=1,且对于任意实数x,y∈R都有:f(xy+1)=f(x)f(y)-f(y)-x+2,若x∈[1,3],则$\frac{f(x-1)}{{f}^{2}(x)+1}$的最大值为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{1}{5}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知半圆C:(x-2)2+y2=4(y≥0),直线 l:x-2y-2=0.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.
(I)写出C与 l的极坐标方程;
(Ⅱ)记A为C直径的右端点,C与l交于点M,且M为圆弧AB的中点,求|OB|.

查看答案和解析>>

同步练习册答案