精英家教网 > 高中数学 > 题目详情
17.某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为$\frac{8}{9}$,第二道工序检查合格的概率为$\frac{9}{10}$,已知该厂三个生产小组分别每月负责生产一台这种仪器.
(I)求本月恰有两台仪器完全合格的概率;
(Ⅱ)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为ξ,求ξ的分布列和每月的盈利期望.

分析 (I)求出每生产一台合格仪器的概率,利用独立重复试验的概率公式求本月恰有两台仪器完全合格的概率;
(II)根据题意得到变量的可能的取值,根据变量对应的事件,利用独立重复试验的概率公式得到概率,写出分布列,根据做出的变量的分布列,代入求期望值的公式做出期望值

解答 解:(Ⅰ) 设恰有两台仪器完全合格的事件为A,每台仪器经两道工序检验完全合格的概率为$P=\frac{8}{9}×\frac{9}{10}{=}\frac{4}{5}$…(2分)
所以$P(A)={C_3}^2{p^2}(1-p)={C_3}^2{(\frac{4}{5})^2}(1-\frac{4}{5})=\frac{48}{125}$…(5分)
(Ⅱ) 每月生产的仪器完全合格的台数可为3,2,1,0四种
所以赢利额ξ的数额可以为15,9,3,-3…(7分)
当ξ=15时,$P(ξ=15)={C_3}^3{(\frac{4}{5})^3}=\frac{64}{125}$
当ξ=9时,$P(ξ=9)={C_3}^2{(\frac{4}{5})^2}\frac{1}{5}=\frac{48}{125}$
当ξ=3时,$P(ξ=3)={C_3}^1\frac{4}{5}{(\frac{1}{5})^2}=\frac{12}{125}$
当ξ=-3时,$P(ξ=-3)={C_3}^0{(\frac{1}{5})^3}=\frac{1}{125}$…(10分)
每月的盈利期望$Eξ=15×\frac{64}{125}+9×\frac{48}{125}+3×\frac{12}{125}+(-3)\frac{1}{125}=\frac{57}{5}=10.14$
所以每月的盈利期望值为10.14万元…(12分)

点评 本题考查离散型随机变量的分布列和期望,独立重复试验的概率公式,本题解题的关键是看出所给的变量符合什么规律,利用概率的公式来解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.“函数f(x)=x(x+a)(a为常数)为偶函数”的充要条件是a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直三棱柱ABC-A′B′C′中,AB=AC=2,AA′=3,AB⊥AC,E为棱B′C′的中点,F为侧棱CC′上一点,若CE⊥AF,则AF与平面ABB′A′所成的角的正切值为(  )
A.3B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若方程$\frac{{x}^{2}}{9-k}$-$\frac{{y}^{2}}{4-k}$=1表示焦点在x轴上的椭圆,则实数k的取值范围是4<k<$\frac{13}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某算法的程序框图如图所示,其中输入的变量J在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录
了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:
甲的频数统计表(部分)
运行次数输出y=1的频数输出y=2的频数输出y=3的频数
3016113
2000967783250
乙的频数统计表(部分)
运行次数输出y=1的频数输出y=2的频数输出y=3的频数
3013134
2000998803199
当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在公比为2的等比数列{an}中,a2与a3的等差中项是9$\sqrt{3}$.
(Ⅰ)求a1的值;
(Ⅱ)若函数y=|a1|sin($\frac{π}{4}$x+φ),|φ|<π,的一部分图象如图所示,M(-1,|a1|),N(3,-|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,AB=7,AC=8,BC=9,P点在平面ABC内,且$\overrightarrow{PA}$$•\overrightarrow{PC}$+7=0,则|$\overrightarrow{PB}$|的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数y=f(x)是定义在上(0,+∞)的减函数,并且满足f(xy)=f(x)+f(y),$f(\frac{1}{3})=\frac{1}{2}$.
(1)求f(1);
(2)若存在实数m,使得f(m)=1,求m的值;
(3)若f(x-2)>1+f(x),求x的取值范围.

查看答案和解析>>

同步练习册答案