精英家教网 > 高中数学 > 题目详情
13.已知某椎体的正视图和侧视图如图,则该锥体的俯视图不可能是(  )
A.B.C.D.

分析 依次对各选项的正视图和侧视图判断可得答案.

解答 解:对于A:边长为2的正四棱锥,可得正视图和侧视图一样,∴A正确.
对于B:直径为2的圆锥,可得正视图和侧视图一样,∴B正确.
对于C:底面为等腰直角三角形,边长为2的三棱锥,可得正视图和侧视图一样,∴C正确.
对于D:三视图投影得到正视图,侧视图和俯视图等的三棱锥是没有的,∴D不正确.
故选D

点评 本题考查了三视图与空间几何体的投影关系,考虑空间想象能力,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.$\lim_{n→∞}\frac{{{2^{n+1}}+{3^{n+1}}}}{{{2^n}+{3^n}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,A(a,0),b(0,b),D(-a,0),△ABD的面积为$2\sqrt{3}$.
(1)求椭圆C的方程;
(2)如图,设P(x0,y0)是椭圆C在第二象限的部分上的一点,且直线PA与y轴交于点M,直线PB与 x轴交于点N,求四边形ABNM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,过抛物线y2=4x的焦点F作直线与抛物线及其准线分别交于A,B,C三点,若$\overrightarrow{FC}$=4$\overrightarrow{FB}$,则$|{\overrightarrow{AB}}|$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线Γ:y2=2px(p>0)的焦点为F.若过点F且斜率为1的直线与抛物线Γ相交于M,N两点,又△MON的面积为${S_{△MON}}=\frac{{\sqrt{2}}}{2}$.
(1)求抛物线Γ的方程;
(2)若点P是抛物线Γ上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在一个半球中,挖出一个体积最大的长方体,挖后几何体的俯视图如图,则下列正视图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{{2\sqrt{|x|}}}{{{e^{x-1}}}}$,若关于x的方程f2(x)-mf(x)+m-1=0恰好有3个不相等的实根,则m的取值范围是(-∞,1)∪{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线E:y2=4x的焦点F为椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点,两曲线在第一象限内交于点P,且|PF|=$\frac{5}{3}$
(Ⅰ)求椭圆M的方程;
(Ⅱ)过点F且互相垂直的两条直线l1与l2,若l1与椭圆M交于A、B两点,l2与抛物线E交于C、D两点,且|CD|=4|AB|,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xoy中,直线l过点M(3,4),其倾斜角为45°,以原点为极点,以x正半轴为极轴建立极坐标,并使得它与直角坐标系xoy有相同的长度单位,圆C的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线l的参数方程和圆C的普通方程;
(Ⅱ)设圆C与直线l交于点A、B,求|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案