精英家教网 > 高中数学 > 题目详情
一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当a>b,b<c时称为“凹数”(如213,312等),若a,b,c∈{1,2,3,4}且a,b,c互不相同,则这个三位数是“凹数”的概率是(  )
A、
1
6
B、
5
24
C、
1
3
D、
7
24
考点:古典概型及其概率计算公式
专题:概率与统计
分析:根据题意,分析“凹数”的定义,可得要得到一个满足a≠c的三位“凹数”,在{1,2,3,4}的4个整数中任取3个数字,组成三位数,再将最小的放在十位上,剩余的2个数字分别放在百、个位上即可,再利用古典概型概率计算公式即可得到所求概率.
解答: 解:根据题意,要得到一个满足a≠c的三位“凹数”,
在{1,2,3,4}的4个整数中任取3个不同的数组成三位数,有C43×
A
3
3
=24种取法,
在{1,2,3,4}的4个整数中任取3个不同的数,将最小的放在十位上,剩余的2个数字分别放在百、个位上,有C43×2=8种情况,
则这个三位数是“凹数”的概率是
8
24
=
1
3

故选:C.
点评:本题考查组合数公式的运用,关键在于根据题干中所给的“凹数”的定义,再利用古典概型概率计算公式即得答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且f(1)>1,f(2)=
2m-3
m+1
,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,当x>0时,f(x)=(1-x)x,则x<0时,f(x)=(  )
A、-x(1+x)
B、x(1+x)
C、-x(1-x)
D、x (1-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,|
AB
|=4,|
AC
|=1
,△ABC的面积为
3
,则
AB
AC
的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga|x+1|(a>0,a≠1),当x∈(-1,0)时,恒有f(x)>0,有(  )
A、0<a<1且f(x)在(-∞,-1)上是增函数
B、0<a<1且f(x)在(-∞,-1)上是减函数
C、a>1且f(x)在(-1,+∞)上是增函数
D、a>1且f(x)在(-1,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=sin(ωx+
π
6
)(ω>0)的最小正周期为π,则ω的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过双曲线的右焦点,斜率为
2
,若l与双曲线的两个交点分别在其两支上,则双曲线的离心率的取值范围为(  )
A、[
2
,+∞)
B、(2,+∞)
C、[
3
,+∞)
D、(
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,a),圆:x2+y2=4.
(1)若过点A的圆的切线只有一条,求a的值及切线方程;
(2)若过点A且在两坐标轴上截距相等的直线与圆相切,求a的值及切线方程.

查看答案和解析>>

同步练习册答案